Wang Qing, Lv Dingding, Zhou Jian, Kong Detong, Lin Shanshan, Zhang Lili, Qiao Zhen-An, Ding Yuxiao, Sun Xiaoyan
State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 China
University of Chinese Academy of Sciences Beijing 100049 China.
Chem Sci. 2025 May 21. doi: 10.1039/d5sc01982f.
The current understanding regarding how the coordination environment of single-atom catalysts supported on nitrogen-doped carbon (M-N-C SACs) regulates their reactivity remains controversial, due to the complicated surface chemistry and lack of atomic-level insights. Here we introduce an experimental modeling approach to unambiguously identify the individual contribution of the local environment to the adsorption activity of CO on Cu-N-C systems. The fundamental intrinsic activities of Cu-N-C systems with different N coordination numbers, N coordination geometries (, pyrrolic N and pyridinic N), defect sites (, armchair and zig-zag), as well as S and P dopants, towards CO adsorption can be explicitly obtained and compared at the strictly atomic level, which would be challenging to access conventional techniques in SACs research. For all kinds of coordination structures, we further identified general rules that control CO adsorption strength and experimental reaction rate. This novel approach is general and can be applied to other SAC metal and reaction systems.
由于表面化学复杂且缺乏原子级的深入了解,目前关于氮掺杂碳负载的单原子催化剂(M-N-C SACs)的配位环境如何调节其反应活性的认识仍存在争议。在此,我们引入一种实验建模方法,以明确确定局部环境对Cu-N-C体系中CO吸附活性的个体贡献。在严格的原子水平上,可以明确获得并比较具有不同N配位数、N配位几何结构(如吡咯N和吡啶N)、缺陷位点(如扶手椅型和锯齿型)以及S和P掺杂剂的Cu-N-C体系对CO吸附的基本本征活性,而这对于SACs研究中的传统技术来说是具有挑战性的。对于所有类型的配位结构,我们进一步确定了控制CO吸附强度和实验反应速率的一般规则。这种新颖的方法具有通用性,可应用于其他SAC金属和反应体系。