Wu Zhounan, Xu Wantong, Wang Xuemei, Peng Dan, Jiang Zhongbiao
Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
Brain Behav. 2024 Dec;14(12):e70181. doi: 10.1002/brb3.70181.
The association between inflammation and brain iron deposition is widely acknowledged. However, the precise causal impact of peripheral inflammatory cytokines on changes in brain iron content remains uncertain.
The study utilized an available genome-wide association study (GWAS) summary associated with inflammatory cytokines from The Cardiovascular Risk in Young Finns Study and the FINRISK surveys. The GWAS data for brain iron markers were obtained from the UK Biobank. We assessed the iron content of each brain region using susceptibility-weighted magnetic resonance imaging, utilizing both quantitative susceptibility mapping and T2* measurements. The primary outcomes were susceptibility (χ) and T2*, which serve as indices of iron deposition. To investigate the causal relationship between exposure and outcome, we primarily employed inverse variance weighting, MR Egger, weighted median, simple mode, and weighted mode methods, collectively enhancing the robustness of our results.
The results of MR analyses demonstrate that our study unveiled that nerve growth factor-β, hepatocyte growth factor, interleukin-1 (IL-1), IL-8, macrophage inflammatory protein 1α, and tumor necrosis factor-α were associated with elevated brain iron content in the regions of left hippocampus, putamen, left thalamus, right pallidum, right hippocampus, left amygdala, respectively. Furthermore, our investigation provides evidence for a negative relationship between IL-1, IL-17, monocyte chemotactic protein-3, tumor necrosis factor-β, and brain iron content in distinct regions.
Our findings suggest a causal association between circulating inflammatory cytokines and brain iron deposition across various brain regions. This provides new insights into the immunopathogenesis of neurodegenerative diseases and potential preventive strategies targeting iron metabolism.
炎症与脑铁沉积之间的关联已得到广泛认可。然而,外周炎性细胞因子对脑铁含量变化的确切因果影响仍不确定。
本研究利用了来自芬兰青年心血管风险研究和芬兰全国健康调查的与炎性细胞因子相关的全基因组关联研究(GWAS)汇总数据。脑铁标志物的GWAS数据来自英国生物银行。我们使用敏感性加权磁共振成像,通过定量敏感性映射和T2测量来评估每个脑区的铁含量。主要结局是敏感性(χ)和T2,它们作为铁沉积的指标。为了研究暴露与结局之间的因果关系,我们主要采用逆方差加权、MR Egger、加权中位数、简单模式和加权模式方法,共同增强了结果的稳健性。
MR分析结果表明,我们的研究发现神经生长因子-β、肝细胞生长因子、白细胞介素-1(IL-1)、IL-8、巨噬细胞炎性蛋白1α和肿瘤坏死因子-α分别与左海马体、壳核、左丘脑、右苍白球、右海马体、左杏仁核区域的脑铁含量升高有关。此外,我们的研究为IL-1、IL-17、单核细胞趋化蛋白-3、肿瘤坏死因子-β与不同区域的脑铁含量之间的负相关关系提供了证据。
我们的研究结果表明循环炎性细胞因子与不同脑区的脑铁沉积之间存在因果关联。这为神经退行性疾病的免疫发病机制以及针对铁代谢的潜在预防策略提供了新的见解。