Suppr超能文献

RADHawk——一款基于人工智能的知识推荐工具,旨在支持精准教育、提高报告效率并减轻认知负担。

RADHawk-an AI-based knowledge recommender to support precision education, improve reporting productivity, and reduce cognitive load.

作者信息

Lopez-Rippe Julian, Reddy Manasa, Velez-Florez Maria Camila, Amiruddin Raisa, Lerebo Wondwossen, Gokli Ami, Francavilla Michael, Reid Janet

机构信息

Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Staten Island University Hospital, New York, NY, USA.

出版信息

Pediatr Radiol. 2025 Feb;55(2):259-267. doi: 10.1007/s00247-024-06116-y. Epub 2024 Dec 7.

Abstract

BACKGROUND

Using artificial intelligence (AI) to augment knowledge is key to establishing precision education in modern radiology training. Our department has developed a novel AI-derived knowledge recommender, the first reported precision education program in radiology, RADHawk (RH), that augments the training of radiology residents and fellows by pushing personalized and relevant educational content in real-time and in context with the case being interpreted.

PURPOSE

To assess the impact on trainees of an AI-based knowledge recommender compared to traditional knowledge sourcing for radiology reporting through reporting time, quality, cognitive load, and learning experiences.

MATERIALS AND METHODS

A mixed methods prospective study allocated trainees to intervention and control groups, working with and without access to RH, respectively. Validated questionnaires and observed and graded simulated picture archiving and communication system (PACS)-based reporting at the start and end of a month's rotation assessed technology acceptance, case report quality, case report time and sourcing time, cognitive load, and attitudes toward modified learning strategies. Non-parametric regression analyses and Mann-Whitney tests were used to compare outcomes between groups, with significance set at P<0.05.

RESULTS

The intervention group (n=28) demonstrated a statistically significant reduction in the case report time by -162 s per case (95%CI -275.76 s to -52.40 s) (P-value = 0.002) and an increase of 14% (95%CI 8.1-19.8%) (P-value <0.001) in accuracy scores compared to the control group (n=29) at the end of the rotation. The intervention group also showed lower levels of mental demand (P=0.030) and experienced less effort (P=0.030) and frustration (P=0.030) while reporting. Additionally, >78% of the intervention group gave positive ratings on RH's effectiveness, increase in productivity, job usefulness, and ease of use. Eighty-nine percent of participants in the intervention group requested access to RH for their next rotation.

CONCLUSION

This study demonstrates that RH, as the first reported AI-derived knowledge recommender for radiology education, significantly reduces reporting time and improves reporting accuracy while reducing overall workload and mental demand for radiology trainees. The high acceptance among trainees suggests its potential for supporting self-directed learning. Further testing of a larger external cohort will support more widespread implementation of RH for precision education.

摘要

背景

利用人工智能(AI)增强知识是在现代放射学培训中建立精准教育的关键。我们科室开发了一种新型的人工智能衍生知识推荐工具,即放射学领域首个报道的精准教育项目RADHawk(RH),它通过实时推送个性化且相关的教育内容,并结合正在解读的病例,增强放射科住院医师和研究员的培训。

目的

通过报告时间、质量、认知负荷和学习体验,评估基于人工智能的知识推荐工具与传统知识获取方式相比,对放射学报告实习生的影响。

材料与方法

一项混合方法的前瞻性研究将实习生分配到干预组和对照组,分别在有和没有RH的情况下工作。在一个月轮转开始和结束时,通过经过验证的问卷以及观察和评分基于模拟 Picture Archiving and Communication System(PACS)的报告,评估技术接受度、病例报告质量、病例报告时间和资料获取时间、认知负荷以及对改进学习策略的态度。使用非参数回归分析和 Mann-Whitney 检验比较组间结果,显著性设定为 P<0.05。

结果

干预组(n = 28)与对照组(n = 29)相比,在轮转结束时,每例病例报告时间显著减少 -162 秒(95%CI -275.76 秒至 -52.40 秒)(P 值 = 0.002),准确率得分提高了 14%(95%CI 8.1 - 19.8%)(P 值 <0.001)。干预组在报告时还表现出较低的心理需求水平(P = 0.030),并且体验到较少的努力(P = 0.030)和挫折感(P = 0.030)。此外,超过 78%的干预组对 RH 的有效性、生产力提高、工作实用性和易用性给予了积极评价。干预组中 89%的参与者要求在下一次轮转时能够使用 RH。

结论

本研究表明,作为放射学教育中首个报道的人工智能衍生知识推荐工具,RH 显著减少了报告时间,提高了报告准确性,同时减少了放射科实习生的总体工作量和心理需求。实习生的高接受度表明其在支持自主学习方面的潜力。对更大规模外部队列的进一步测试将支持更广泛地实施 RH 以实现精准教育。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验