Suppr超能文献

MDMNI-DGD:一种基于多组学数据和多视图网络整合的用于可药物化基因发现的新型图神经网络方法。

MDMNI-DGD: A novel graph neural network approach for druggable gene discovery based on the integration of multi-omics data and the multi-view network.

作者信息

Li Jianwei, Li Bing, Zhang Xukun, Ma Xuxu, Li Ziyu

机构信息

School of Artificial Intelligence, Hebei University of Technology, 300401, Tianjin, China.

School of Artificial Intelligence, Hebei University of Technology, 300401, Tianjin, China.

出版信息

Comput Biol Med. 2025 Feb;185:109511. doi: 10.1016/j.compbiomed.2024.109511. Epub 2024 Dec 6.

Abstract

Accurately predicting druggable genes is of paramount importance for enhancing the efficacy of targeted therapies, reducing drug-related toxicities and improving patients' survival rates. Nevertheless, accurately predicting candidate cancer-druggable genes remains a critical challenge in translational medicine due to the high heterogeneity and complexity of cancer data. In this study, we proposed a novel graph neural approach called Druggable Gene Discovery based on the Integration of Multi-omics Data and the Multi-view Network (MDMNI-DGD), aiming to predict and evaluate cancer-druggable genes. MDMNI-DGD integrated a comprehensive set of multi-omics data, including copy number variations, DNA methylation, somatic mutations, and gene expression profiles. Simultaneously, it constructed the multi-view gene association network based on protein-protein interactions (PPI), protein structural domains, gene co-expression, pathway co-occurrence, gene sequence and gene ontology. Compared to other state-of-the-art approaches, MDMNI-DGD exhibits excellent performance in key evaluation metrics such as AUROC and AUPR. Moreover, the case study has also demonstrated the efficacy of our approach in discovering potentially druggable genes. Among more than 20,000 protein-coding genes, MDMNI-DGD successfully identified 872 potentially druggable genes. The findings from this investigation may serve to bolster the assessment of pan-cancer druggable genes, potentially catalyzing the development of more personalized and efficacious therapeutic interventions.

摘要

准确预测可成药基因对于提高靶向治疗的疗效、降低药物相关毒性以及提高患者生存率至关重要。然而,由于癌症数据的高度异质性和复杂性,准确预测候选癌症可成药基因仍然是转化医学中的一项关键挑战。在本研究中,我们提出了一种基于多组学数据整合和多视图网络的新型图神经网络方法,称为基于多组学数据和多视图网络整合的可成药基因发现(MDMNI-DGD),旨在预测和评估癌症可成药基因。MDMNI-DGD整合了一套全面的多组学数据,包括拷贝数变异、DNA甲基化、体细胞突变和基因表达谱。同时,它基于蛋白质-蛋白质相互作用(PPI)、蛋白质结构域、基因共表达、通路共现、基因序列和基因本体构建了多视图基因关联网络。与其他现有方法相比,MDMNI-DGD在诸如AUROC和AUPR等关键评估指标上表现出优异的性能。此外,案例研究也证明了我们的方法在发现潜在可成药基因方面的有效性。在超过20000个蛋白质编码基因中,MDMNI-DGD成功识别出872个潜在可成药基因。本研究的结果可能有助于加强对泛癌可成药基因的评估,有可能推动更个性化和有效的治疗干预措施的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验