Suppr超能文献

解读气候与疟疾的关系:坦桑尼亚东南部农村地区的机器学习方法

Deciphering the climate-malaria nexus: A machine learning approach in rural southeastern Tanzania.

作者信息

Zheng Jin-Xin, Lu Shen-Ning, Li Qin, Li Yue-Jin, Xue Jin-Bo, Gavana Tegemeo, Chaki Prosper, Xiao Ning, Mlacha Yeromin, Wang Duo-Quan, Zhou Xiao-Nong

机构信息

School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; One Health Center, Shanghai Jiao Tong University - The Edinburgh University, Shanghai, 200025, China.

National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, China.

出版信息

Public Health. 2025 Jan;238:124-130. doi: 10.1016/j.puhe.2024.11.013. Epub 2024 Dec 6.

Abstract

OBJECTIVES

Malaria remains a critical public health challenge, especially in regions like southeastern Tanzania. Understanding the intricate relationship between environmental factors and malaria incidence is essential for effective control and elimination strategies.

STUDY DESIGN

Cohort study.

METHODS

This cohort study, conducted between Jan 2016 and October 2021 across three districts in southeastern Tanzania, utilized advanced machine learning techniques, specifically the Extreme Gradient Boosting (XGBoost) model, to examine the impact of climate factors on malaria incidence. SHapley Additive exPlanations (SHAP) values were applied to interpret model predictions, highlighting the roles of normalized difference vegetation index (NDVI), temperature, and rainfall in shaping malaria transmission dynamics.

RESULTS

Analysis revealed considerable heterogeneity in malaria incidence across southeastern Tanzania, with Kibiti experiencing the highest number of cases (15,308) over the study period. Seasonal peaks corresponded with rainy periods, though incidence rates varied by district. Incorporating lagged climate variables and seasonal trends significantly improved forecast accuracy, with the one-month lag model achieving the lowest mean absolute error (MAE = 175.46) and root mean squared error (RMSE = 228.24). SHAP analysis identified seasonality (mean SHAP 29.6), followed by lagged temperature (13.8), rainfall (12.4), and NDVI (5.96), as the most influential factors, reflecting the biological underpinnings of malaria transmission.

CONCLUSIONS

This study demonstrates the utility of machine learning and explainable SHAP in malaria epidemiology, providing a data-driven framework to guide targeted, climate-informed malaria control strategies. By capturing seasonal and climate-linked risks, these methods hold promise for enhancing public health planning and adaptive response in malaria-endemic regions.

摘要

目标

疟疾仍然是一项严峻的公共卫生挑战,尤其是在坦桑尼亚东南部等地区。了解环境因素与疟疾发病率之间的复杂关系对于有效的控制和消除策略至关重要。

研究设计

队列研究。

方法

这项队列研究于2016年1月至2021年10月在坦桑尼亚东南部的三个地区进行,利用先进的机器学习技术,特别是极端梯度提升(XGBoost)模型,来研究气候因素对疟疾发病率的影响。应用SHapley加性解释(SHAP)值来解释模型预测,突出归一化植被指数(NDVI)、温度和降雨在塑造疟疾传播动态中的作用。

结果

分析显示坦桑尼亚东南部各地的疟疾发病率存在显著异质性,在研究期间,基比蒂的病例数最多(15308例)。季节性高峰与雨季相对应,不过发病率因地区而异。纳入滞后气候变量和季节性趋势显著提高了预测准确性,其中一个月滞后模型的平均绝对误差(MAE = 175.46)和均方根误差(RMSE = 228.24)最低。SHAP分析确定季节性(平均SHAP为29.6),其次是滞后温度(13.8)、降雨(12.4)和NDVI(5.96)是最具影响力的因素,反映了疟疾传播的生物学基础。

结论

本研究证明了机器学习和可解释的SHAP在疟疾流行病学中的实用性,提供了一个数据驱动的框架来指导有针对性的、基于气候的疟疾控制策略。通过捕捉季节性和与气候相关的风险,这些方法有望加强疟疾流行地区的公共卫生规划和适应性应对。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验