Suppr超能文献

通过作物物候模型与机器学习的融合来预测中国各地的水稻物候。

Predicting rice phenology across China by integrating crop phenology model and machine learning.

机构信息

National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.

Department of Agronomy, Kansas State University, 2108 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA.

出版信息

Sci Total Environ. 2024 Nov 15;951:175585. doi: 10.1016/j.scitotenv.2024.175585. Epub 2024 Aug 21.

Abstract

This study explores the integration of crop phenology models and machine learning approaches for predicting rice phenology across China, to gain a deeper understanding of rice phenology prediction. Multiple approaches were used to predict heading and maturity dates at 337 locations across the main rice growing regions of China from 1981 to 2020, including crop phenology model, machine learning and hybrid model that integrate both approaches. Furthermore, an interpretable machine learning (IML) using SHapley Additive exPlanation (SHAP) was employed to elucidate influence of climatic and varietal factors on uncertainty in crop phenology model predictions. Overall, the hybrid model demonstrated a high accuracy in predicting rice phenology, followed by machine learning and crop phenology models. The best hybrid model, based on a serial structure and the eXtreme Gradient Boosting (XGBoost) algorithm, achieved a root mean square error (RMSE) of 4.65 and 5.72 days and coefficient of determination (R) values of 0.93 and 0.9 for heading and maturity predictions, respectively. SHAP analysis revealed temperature to be the most influential climate variable affecting phenology predictions, particularly under extreme temperature conditions, while rainfall and solar radiation were found to be less influential. The analysis also highlighted the variable importance of climate across different phenological stages, rice cultivation patterns, and geographic regions, underscoring the notable regionality. The study proposed that a hybrid model using an IML approach would not only improve the accuracy of prediction but also offer a robust framework for leveraging data-driven in crop modeling, providing a valuable tool for refining and advancing the modeling process in rice.

摘要

本研究探索了作物物候模型与机器学习方法的融合,以预测中国各地的水稻物候,从而深入了解水稻物候预测。采用多种方法预测了 1981 年至 2020 年中国主要水稻种植区 337 个地点的抽穗期和成熟期,包括作物物候模型、机器学习和集成两种方法的混合模型。此外,还使用基于 SHapley Additive exPlanation(SHAP)的可解释机器学习(IML)方法来阐明气候和品种因素对作物物候模型预测不确定性的影响。总体而言,混合模型在预测水稻物候方面表现出较高的准确性,其次是机器学习和作物物候模型。基于串行结构和极端梯度提升(XGBoost)算法的最佳混合模型,在抽穗期和成熟期预测中,均方根误差(RMSE)分别为 4.65 天和 5.72 天,决定系数(R)值分别为 0.93 和 0.9。SHAP 分析表明,温度是影响物候预测的最主要气候变量,尤其是在极端温度条件下,而降雨和太阳辐射的影响则较小。该分析还突出了气候在不同物候阶段、水稻种植模式和地理区域的重要性,强调了明显的区域性。该研究提出,使用 IML 方法的混合模型不仅可以提高预测精度,还可以为利用数据驱动的作物建模提供稳健的框架,为完善和推进水稻建模过程提供了有价值的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验