Suppr超能文献

正常人类供体眼传统流出途径中房水动力学的高分辨率建模。

High-resolution modeling of aqueous humor dynamics in the conventional outflow pathway of a normal human donor eye.

作者信息

Karimi Alireza, Razaghi Reza, Stanik Ansel, Daniel D'costa Siddharth, Mirafzal Iman, Kelley Mary J, Acott Ted S, Gong Haiyan

机构信息

Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States.

Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States.

出版信息

Comput Methods Programs Biomed. 2025 Mar;260:108538. doi: 10.1016/j.cmpb.2024.108538. Epub 2024 Nov 29.

Abstract

BACKGROUND AND OBJECTIVE

The conventional aqueous outflow pathway, which includes the trabecular meshwork (TM), juxtacanalicular tissue (JCT), and inner wall endothelium of Schlemm's canal (SC) and its basement membrane, plays a significant role in regulating intraocular pressure (IOP) by controlling aqueous humor outflow resistance. Despite its significance, the biomechanical and hydrodynamic properties of this region remain inadequately understood. Fluid-structure interaction (FSI) and computational fluid dynamics (CFD) modeling using high-resolution microstructural images of the outflow pathway provides a comprehensive method to estimate these properties under varying conditions, offering valuable understandings beyond the capabilities of current imaging techniques.

METHODS

In this study, we utilized high-resolution 3D serial block-face scanning electron microscopy (SBF-SEM) to image the TM/JCT/SC complex of a normal human donor eye perfusion-fixed at an IOP of 7 mm Hg. We developed a detailed 3D finite element (FE) model of the pathway using SBF-SEM images to simulate the biomechanical environment. The model included the TM/JCT/SC complex (structure) with interspersed aqueous humor (fluid). We employed a 3D, inverse FE algorithm to calculate the unloaded geometry of the TM/JCT/SC complex and utilized FSI to simulate the pressurization of the complex from 0 to 15 mm Hg.

RESULTS

Our simulations revealed that the resultant velocity distribution in the aqueous humor across the TM/JCT/SC complex is heterogeneous. The JCT and its deepest regions, specifically the basement membrane of the inner wall of SC, exhibited a volumetric average velocity of ∼0.011 mm/s, which is higher than the TM regions, with a volumetric average velocity of ∼0.007 mm/s. Shear stress analysis indicated that the maximum shear stress, based on our FE code criteria, was 0.5 Pa starting from 10 µm into the TM from the anterior chamber and increased to 0.95 Pa in the JCT and its adjacent SC inner wall basement membrane. Also, the tensile stress and strain distributions showed significant variations, with the first principal stress reaching up to 57 Pa (compressive volumetric average) and the first principal strain reaching up to 3.5 % in areas of high mechanical loading. The resultant stresses, strains, and velocities exhibited relatively similar average values across the TM, JCT, and SC regions, primarily due to the uniform elastic moduli assigned to these components. Our computational fluid dynamics (CFD) analysis revealed that while the velocity of the aqueous humor remained consistent, the maximum shear stress was reduced by a factor of thirty.

CONCLUSION

The uneven distribution of shear stress and velocity within the TM/JCT/SC complex highlights the complex biomechanical environment that regulates aqueous humor outflow.

摘要

背景与目的

传统的房水流出途径,包括小梁网(TM)、近小管组织(JCT)、施莱姆管(SC)的内壁内皮及其基底膜,通过控制房水流出阻力在调节眼压(IOP)方面发挥着重要作用。尽管其意义重大,但该区域的生物力学和流体动力学特性仍未得到充分理解。利用流出途径的高分辨率微观结构图像进行流固耦合(FSI)和计算流体动力学(CFD)建模,提供了一种在不同条件下估计这些特性的综合方法,能提供超越当前成像技术能力的有价值见解。

方法

在本研究中,我们利用高分辨率三维连续块面扫描电子显微镜(SBF - SEM)对在7 mmHg眼压下灌注固定的正常人类供体眼的TM/JCT/SC复合体进行成像。我们使用SBF - SEM图像开发了该途径的详细三维有限元(FE)模型,以模拟生物力学环境。该模型包括TM/JCT/SC复合体(结构)以及其间散布的房水(流体)。我们采用三维逆有限元算法计算TM/JCT/SC复合体的无载荷几何形状,并利用流固耦合模拟该复合体从0至15 mmHg的加压过程。

结果

我们的模拟显示,整个TM/JCT/SC复合体中房水的合成速度分布是不均匀的。JCT及其最深区域,特别是SC内壁的基底膜,体积平均速度约为0.011 mm/s,高于TM区域,TM区域的体积平均速度约为0.007 mm/s。剪应力分析表明,根据我们的有限元代码标准,最大剪应力从前房进入TM 10 µm处开始为0.5 Pa,并在JCT及其相邻的SC内壁基底膜中增加到0.95 Pa。此外,拉应力和应变分布显示出显著变化,在高机械载荷区域,第一主应力高达57 Pa(体积平均压缩),第一主应变高达3.5%。整个TM、JCT和SC区域的合成应力、应变和速度表现出相对相似的平均值,这主要是由于为这些组件分配了均匀的弹性模量。我们的计算流体动力学(CFD)分析表明,虽然房水速度保持一致,但最大剪应力降低了30倍。

结论

TM/JCT/SC复合体内剪应力和速度的不均匀分布突出了调节房水流出的复杂生物力学环境。

相似文献

本文引用的文献

9
Segmental outflow dynamics in the trabecular meshwork of living mice.活体小鼠小梁网的节段性流出动力学。
Exp Eye Res. 2022 Dec;225:109285. doi: 10.1016/j.exer.2022.109285. Epub 2022 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验