Suppr超能文献

Schlemm管内壁上流出物分割与孔隙的共定位。

Colocalization of outflow segmentation and pores along the inner wall of Schlemm's canal.

作者信息

Braakman Sietse T, Read A Thomas, Chan Darren W-H, Ethier C Ross, Overby Darryl R

机构信息

Department of Bioengineering, Imperial College London, London, United Kingdom.

Department of Ophthalmology and Vision Sciences, University of Toronto, Canada.

出版信息

Exp Eye Res. 2015 Jan;130:87-96. doi: 10.1016/j.exer.2014.11.008. Epub 2014 Nov 13.

Abstract

All aqueous humor draining through the conventional outflow pathway must cross the endothelium of Schlemm's canal (SC), likely by passing through micron-sized transendothelial pores. SC pores are non-uniformly distributed along the inner wall endothelium, but it is unclear how the distribution of pores relates to the non-uniform or segmental distribution of aqueous humor outflow through the trabecular meshwork. It is hypothesized that regions in the juxtacanalicular tissue (JCT) with higher local outflow should coincide with regions of greater inner wall pore density compared to JCT regions with lower outflow. Three pairs of non-glaucomatous human donor eyes were perfused at 8 mmHg with fluorescent tracer nanospheres to decorate local patterns of outflow segmentation through the JCT. The inner wall was stained for CD31 and/or vimentin and imaged en face using confocal and scanning electron microscopy (SEM). Confocal and SEM images were spatially registered to examine the spatial relationship between inner wall pore density and tracer intensity in the underlying JCT. For each eye, tracer intensity, pore density (n) and pore diameter (D) (for both transcellular "I" and paracellular "B" pores) were measured in 4-7 regions of interest (ROIs; 50 × 150 μm each). Analysis of covariance was used to examine the relationship between tracer intensity and pore density, as well as the relationship between tracer intensity and three pore metrics (nD, nD(2) and nD(3)) that represent the local hydraulic conductivity of the outflow pathway as predicted by various hydrodynamic models. Tracer intensity in the JCT correlated positively with local pore density when considering total pores (p = 0.044) and paracellular B pores on their own (p = 0.016), but not transcellular I-pores on their own (p = 0.54). Local hydraulic conductivity as predicted by the three hydrodynamic models all showed a significant positive correlation with tracer intensity when considering total pores and B-pores (p < 0.0015 and p < 10(-4)) but not I-pores (p > 0.38). These data suggest that aqueous humor passes through micron-sized pores in the inner wall endothelium of SC. Paracellular B-pores appear to have a dominant contribution towards transendothelial filtration across the inner wall relative to transcellular I-pores. Impaired pore formation, as previously described in glaucomatous SC cells, may thereby contribute to greater outflow heterogeneity, outflow obstruction, and IOP elevation in glaucoma.

摘要

所有经传统流出途径引流的房水都必须穿过施莱姆管(SC)的内皮,可能是通过微米大小的跨内皮孔。SC孔沿内壁内皮呈非均匀分布,但尚不清楚孔的分布与通过小梁网的房水流出的非均匀或节段性分布之间有何关系。据推测,与流出量较低的近管组织(JCT)区域相比,局部流出量较高的JCT区域应与内壁孔密度较大的区域一致。用荧光示踪纳米球以8 mmHg的压力灌注三对非青光眼患者的供体眼,以描绘通过JCT的流出节段的局部模式。对内壁进行CD31和/或波形蛋白染色,并使用共聚焦显微镜和扫描电子显微镜(SEM)进行正面成像。对共聚焦图像和SEM图像进行空间配准,以检查内壁孔密度与下方JCT中示踪剂强度之间的空间关系。对于每只眼睛,在4 - 7个感兴趣区域(ROI;每个区域50×150μm)中测量示踪剂强度、孔密度(n)和孔径(D)(跨细胞“ I”孔和细胞旁“ B”孔)。使用协方差分析来检查示踪剂强度与孔密度之间的关系,以及示踪剂强度与三种孔指标(nD、nD²和nD³)之间的关系,这些指标代表了各种流体动力学模型预测的流出途径的局部水力传导率。当考虑总孔时,JCT中的示踪剂强度与局部孔密度呈正相关(p = 0.044),单独考虑细胞旁B孔时也呈正相关(p = 0.016),但单独考虑跨细胞I孔时则不然(p = 0.54)。当考虑总孔和B孔时,三种流体动力学模型预测的局部水力传导率均与示踪剂强度呈显著正相关(p < 0.0015和p < 10⁻⁴),但与I孔无关(p > 0.38)。这些数据表明,房水通过SC内壁内皮中的微米大小的孔。相对于跨细胞I孔,细胞旁B孔似乎对跨内壁的跨内皮滤过起主要作用。如先前在青光眼性SC细胞中所描述的,孔形成受损可能因此导致青光眼患者更大的流出异质性、流出阻塞和眼压升高。

相似文献

1
Colocalization of outflow segmentation and pores along the inner wall of Schlemm's canal.
Exp Eye Res. 2015 Jan;130:87-96. doi: 10.1016/j.exer.2014.11.008. Epub 2014 Nov 13.
2
Biomechanical strain as a trigger for pore formation in Schlemm's canal endothelial cells.
Exp Eye Res. 2014 Oct;127:224-35. doi: 10.1016/j.exer.2014.08.003. Epub 2014 Aug 14.
4
The Role of Schlemm's Canal Endothelium Cellular Connectivity in Giant Vacuole Formation: A 3D Electron Microscopy Study.
Invest Ophthalmol Vis Sci. 2019 Apr 1;60(5):1630-1643. doi: 10.1167/iovs.18-26011.
5
High-resolution modeling of aqueous humor dynamics in the conventional outflow pathway of a normal human donor eye.
Comput Methods Programs Biomed. 2025 Mar;260:108538. doi: 10.1016/j.cmpb.2024.108538. Epub 2024 Nov 29.
6
Implementing new computational methods for the study of JCT and SC inner wall basement membrane biomechanics and hydrodynamics.
Comput Methods Programs Biomed. 2024 Jan;243:107909. doi: 10.1016/j.cmpb.2023.107909. Epub 2023 Oct 31.
8
Modeling the biomechanics of the conventional aqueous outflow pathway microstructure in the human eye.
Comput Methods Programs Biomed. 2022 Jun;221:106922. doi: 10.1016/j.cmpb.2022.106922. Epub 2022 May 29.
9
Two pore types in the inner-wall endothelium of Schlemm's canal.
Invest Ophthalmol Vis Sci. 1998 Oct;39(11):2041-8.
10
Transport across Schlemm's canal endothelium and the blood-aqueous barrier.
Exp Eye Res. 2016 May;146:17-21. doi: 10.1016/j.exer.2015.11.026. Epub 2015 Dec 13.

引用本文的文献

2
Endothelial glycocalyx in different flow regions of the trabecular outflow pathway in bovine eyes.
Front Cell Dev Biol. 2025 Apr 25;13:1569569. doi: 10.3389/fcell.2025.1569569. eCollection 2025.
3
FYN regulates aqueous humor outflow and IOP through the phosphorylation of VE-CADHERIN.
Nat Commun. 2025 Jan 2;16(1):51. doi: 10.1038/s41467-024-55232-8.
6
Role of mechanically-sensitive cation channels Piezo1 and TRPV4 in trabecular meshwork cell mechanotransduction.
Hum Cell. 2024 Mar;37(2):394-407. doi: 10.1007/s13577-024-01035-4. Epub 2024 Feb 5.
7
Implementing new computational methods for the study of JCT and SC inner wall basement membrane biomechanics and hydrodynamics.
Comput Methods Programs Biomed. 2024 Jan;243:107909. doi: 10.1016/j.cmpb.2023.107909. Epub 2023 Oct 31.
10
Morphological and biomechanical analyses of the human healthy and glaucomatous aqueous outflow pathway: Imaging-to-modeling.
Comput Methods Programs Biomed. 2023 Jun;236:107485. doi: 10.1016/j.cmpb.2023.107485. Epub 2023 Mar 16.

本文引用的文献

1
Altered mechanobiology of Schlemm's canal endothelial cells in glaucoma.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13876-81. doi: 10.1073/pnas.1410602111. Epub 2014 Sep 8.
2
Biomechanical strain as a trigger for pore formation in Schlemm's canal endothelial cells.
Exp Eye Res. 2014 Oct;127:224-35. doi: 10.1016/j.exer.2014.08.003. Epub 2014 Aug 14.
3
Multi-scale analysis of segmental outflow patterns in human trabecular meshwork with changing intraocular pressure.
J Ocul Pharmacol Ther. 2014 Mar-Apr;30(2-3):213-23. doi: 10.1089/jop.2013.0182. Epub 2014 Jan 23.
4
Measurement of the anisotropic thermal conductivity of the porcine cornea.
Exp Eye Res. 2013 Oct;115:216-23. doi: 10.1016/j.exer.2013.07.029. Epub 2013 Aug 8.
5
Effects of Y27632 on aqueous humor outflow facility with changes in hydrodynamic pattern and morphology in human eyes.
Invest Ophthalmol Vis Sci. 2013 Aug 28;54(8):5859-70. doi: 10.1167/iovs.12-10930.
7
Segmental versican expression in the trabecular meshwork and involvement in outflow facility.
Invest Ophthalmol Vis Sci. 2011 Jul 7;52(8):5049-57. doi: 10.1167/iovs.10-6948.
8
Neutrophils cross the BBB primarily on transcellular pathways: an in vitro study.
Brain Res. 2011 Jan 7;1367:62-76. doi: 10.1016/j.brainres.2010.09.076. Epub 2010 Sep 25.
9
Variation in Schlemm's canal diameter and location by ultrasound biomicroscopy.
Ophthalmology. 2010 May;117(5):916-20. doi: 10.1016/j.ophtha.2009.09.041. Epub 2010 Jan 15.
10
Morphological and hydrodynamic correlates in monkey eyes with laser induced glaucoma.
Exp Eye Res. 2009 Nov;89(5):748-56. doi: 10.1016/j.exer.2009.06.015. Epub 2009 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验