Dos Santos Karen, Bertho Gildas, Baudin Mathieu, Giraud Nicolas
Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France.
Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France; Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL Université, Sorbonne Université 45 rue d'Ulm, 75005 Paris, France.
Prog Nucl Magn Reson Spectrosc. 2024 Nov-Dec;144-145:15-39. doi: 10.1016/j.pnmrs.2024.05.003. Epub 2024 May 31.
In recent years, there has been remarkable progress in the field of dissolution dynamic nuclear polarization (D-DNP). This method has shown significant potential for enhancing nuclear polarization by over 10,000 times, resulting in a substantial increase in sensitivity. The unprecedented signal enhancements achieved with D-DNP have opened new possibilities for in vitro analysis. This method enables the monitoring of structural and enzymatic kinetics with excellent time resolution at low concentrations. Furthermore, these advances can be straightforwardly translated to in vivo magnetic resonance imaging and magnetic resonance spectroscopy (MRI and MRS) experiments. D-DNP studies have used a range of C labeled molecules to gain deeper insights into the cellular metabolic pathways and disease hallmarks. Over the last 15 years, D-DNP has been used to analyze glutamine, a key player in the cellular metabolism, involved in many diseases including cancer. Glutamine is the most abundant amino acid in blood plasma and the major carrier of nitrogen, and it is converted to glutamate inside the cell, where the latter is the most abundant amino acid. It has been shown that increased glutamine consumption by cells is a hallmark of tumor cancer metabolism. In this review, we first highlight the significance of glutamine in metabolism, providing an in-depth description of its use at the cellular level as well as its specific roles in various organs. Next, we present a comprehensive overview of the principles of D-DNP. Finally, we review the state of the art in D-DNP glutamine analysis and its application in oncology, neurology, and perfusion marker studies.
近年来,溶解动态核极化(D-DNP)领域取得了显著进展。该方法已显示出将核极化提高超过10000倍的巨大潜力,从而使灵敏度大幅提高。D-DNP实现的前所未有的信号增强为体外分析开辟了新的可能性。这种方法能够在低浓度下以出色的时间分辨率监测结构和酶动力学。此外,这些进展可以直接转化为体内磁共振成像和磁共振波谱(MRI和MRS)实验。D-DNP研究使用了一系列碳标记分子,以更深入地了解细胞代谢途径和疾病特征。在过去的15年里,D-DNP已被用于分析谷氨酰胺,它是细胞代谢中的关键参与者,涉及包括癌症在内的许多疾病。谷氨酰胺是血浆中最丰富的氨基酸和氮的主要载体,它在细胞内转化为谷氨酸,而谷氨酸是细胞内最丰富的氨基酸。研究表明,细胞谷氨酰胺消耗增加是肿瘤癌症代谢的一个标志。在这篇综述中,我们首先强调谷氨酰胺在代谢中的重要性,深入描述其在细胞水平的用途以及在各个器官中的具体作用。接下来,我们全面概述D-DNP的原理。最后,我们回顾D-DNP谷氨酰胺分析的现状及其在肿瘤学、神经学和灌注标记研究中的应用。