Suppr超能文献

通过强金属载体相互作用提升钠-二氧化锰超级电容器性能。

Boosted Na-MnO supercapacitor performance via strong metal support interaction.

作者信息

Wang Kailun, Wang Junjie, Qian Jun, Yu Qijun, Bai Jia-Qi, Wei Yuxue, Chen Jingshuai, Wu Mingyuan, Sun Song, Mao Chang-Jie

机构信息

School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.

High-end chemicals and cutting-edge new materials Technology Innovation Center of Hefei, Hefei, Anhui, China.

出版信息

J Colloid Interface Sci. 2025 Mar 15;682:865-874. doi: 10.1016/j.jcis.2024.11.252. Epub 2024 Dec 5.

Abstract

MnO is widely utilized as an electrode material in supercapacitors. However, overcoming challenges such as sluggish ion migration, aggregate tendency, and low conductivity is imperative for optimizing MnO-based supercapacitors. Herein, NaMnO was employed as the Mn precursor to introducing a higher concentration of small Na ions into the layer structure of δ-MnO. This elevated Na concentration fosters efficient ion migration within the MnO lattice. Moreover, Na-MnO was deposited onto Cu/graphene (Cu/G) composites. Leveraging the strong metal-support interactions (SMSI) between Cu and graphene, the resulting composite demonstrates enhanced conductivity and reduced aggregation. Combining MnO with Cu/G resulted in a conductivity of 5.78 × 10 S cm, which is significantly better than that of MnO. The composite material exhibits an exceptional electrochemical performance, boasting a specific capacitance of 655 F g at 1 A g and impressive long-term stability, retaining 95 % of its capacitance after 4000 cycles at 10 A g. Additionally, a 1.6 V asymmetric supercapacitor was assembled, featuring carbon as the anode, Cu/G/MnO as the cathode, and 1 M KOH as the electrolyte, achieving a superior specific capacitance of 75 F g at 1 A g. Cu/G/MnO//carbon demonstrates a maximum energy density of 27 Wh kg at a power density of 0.8 W kg. This study underscores a facile strategy to enhance MnO-based supercapacitors by leveraging the SMSI effect for boosted performance.

摘要

MnO被广泛用作超级电容器的电极材料。然而,克服诸如离子迁移缓慢、聚集倾向和低电导率等挑战对于优化基于MnO的超级电容器至关重要。在此,采用NaMnO作为锰前驱体,将更高浓度的小钠离子引入δ-MnO的层状结构中。这种升高的钠浓度促进了MnO晶格内的有效离子迁移。此外,将Na-MnO沉积在Cu/石墨烯(Cu/G)复合材料上。利用Cu与石墨烯之间的强金属-载体相互作用(SMSI),所得复合材料表现出增强的导电性和减少的聚集。将MnO与Cu/G结合导致电导率为5.78×10 S cm,这明显优于MnO。该复合材料表现出优异的电化学性能,在1 A g时具有655 F g的比电容和令人印象深刻的长期稳定性,在10 A g下4000次循环后保留其电容的95%。此外,组装了一个1.6 V的非对称超级电容器,以碳为阳极,Cu/G/MnO为阴极,1 M KOH为电解质,在1 A g时实现了75 F g的优异比电容。Cu/G/MnO//碳在0.8 W kg的功率密度下表现出27 Wh kg的最大能量密度。这项研究强调了一种通过利用SMSI效应来提高基于MnO的超级电容器性能的简便策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验