Tran Natalie, Wang Wei, Chen Yichong, Feng Pingyun, Bu Xianhui
Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA, 90840, USA.
Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA.
Small. 2025 Jan;21(4):e2410680. doi: 10.1002/smll.202410680. Epub 2024 Dec 8.
Isoreticular chemistry is among the most powerful strategies for designing novel materials with optimizable pore geometry and properties. Of great significance to the further advance of isoreticular chemistry is the development of broadly applicable new concepts capable of guiding and systematizing the ligand-family expansion as well as establishing correlations between dissimilar and seemingly uncorrelated ligands for better predictive synthetic design and more insightful structure and property analysis. Here ligand circuit concept is proposed and its use has been demonstrated for the synthesis of a family of highly stable, high-performance pore-space-partitioned materials based on an acyclic ligand, trans, trans-muconic acid. This work represents a key step toward developing highly porous and highly stable pore-space-partitioned materials from acyclic ligands. The new materials exhibit excellent sorption properties such as high uptake capacity for CO (81.3 cm g) and CH (165.4 cm g) by CPM-7.3a-NiV. CPM-7.3a-CoV shows CH-selective CH/CH separation properties and its high uptakes for CH (134.0 cm g) and CH (148.0 cm g) at 1 bar and 298 K contribute to the separation potential of 1.35 mmol g. The multi-cycle breakthrough experiment confirms the promising separation performance for CH/CO.
同网化学是设计具有可优化孔几何形状和性能的新型材料的最强大策略之一。对于同网化学的进一步发展具有重要意义的是开发广泛适用的新概念,这些概念能够指导和系统化配体家族的扩展,并建立不同且看似不相关的配体之间的相关性,以实现更好的预测性合成设计以及更深入的结构和性能分析。在此,我们提出了配体回路概念,并展示了其在基于无环配体反式,反式-粘康酸合成一系列高度稳定、高性能的孔空间分隔材料中的应用。这项工作代表了从无环配体开发高度多孔且高度稳定的孔空间分隔材料的关键一步。这些新材料表现出优异的吸附性能,例如CPM-7.3a-NiV对CO(81.3 cm³ g⁻¹)和CH₄(165.4 cm³ g⁻¹)具有高吸附容量。CPM-7.3a-CoV显示出对CH₄具有选择性的CH₄/CH₄分离性能,并且在1 bar和298 K下对CH₄(134.0 cm³ g⁻¹)和C₂H₄(148.0 cm³ g⁻¹)的高吸附量有助于实现1.35 mmol g⁻¹的分离潜力。多循环突破实验证实了其对CH₄/CO具有良好的分离性能。