Suppr超能文献

用于气体分离和电催化析氧反应的多模块金属有机框架合成中的等规网络耐受性和相选择

Isoreticular Tolerance and Phase Selection in the Synthesis of Multi-Module Metal-Organic Frameworks for Gas Separation and Electrocatalytic OER.

作者信息

Xiao Yuchen, Bu Xianhui, Feng Pingyun

机构信息

Department of Chemistry, University of California, 900 University Ave, Riverside, CA 92521, USA.

Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA.

出版信息

Angew Chem Int Ed Engl. 2025 Feb 17;64(8):e202422635. doi: 10.1002/anie.202422635. Epub 2025 Jan 28.

Abstract

Although metal-organic frameworks are coordination-driven assemblies, the structural prediction and design using metal-ligand interactions can be unreliable due to other competing interactions. Leveraging non-coordination interactions to develop porous assemblies could enable new materials and applications. Here, we use a multi-module MOF system to explore important and pervasive impact of ligand-ligand interactions on metal-ligand as well as ligand-ligand co-assembly process. It is found that ligand-ligand interactions play critical roles on the scope or breakdown of isoreticular chemistry. With cooperative di- and tri-topic ligands, a family of Ni-MOFs has been synthesized in various structure types including partitioned MIL-88-acs (pacs), interrupted pacs (i-pacs), and UMCM-1-muo. A new type of isoreticular chemistry on the muo platform is established between two drastically different chemical systems. The gas sorption and electrocatalytic studies were performed that reveal excellent performance such as high CH/CO selectivity of 21.8 and high CH uptake capacity of 114.5 cm/g at 298 K and 1 bar.

摘要

尽管金属有机框架是由配位驱动的组装体,但由于存在其他竞争相互作用,利用金属-配体相互作用进行结构预测和设计可能并不可靠。利用非配位相互作用来开发多孔组装体可以实现新材料和新应用。在这里,我们使用一个多模块金属有机框架系统来探索配体-配体相互作用对金属-配体以及配体-配体共组装过程的重要且普遍的影响。研究发现,配体-配体相互作用在等规化学的范围或分解中起着关键作用。通过使用双齿和三齿配体,合成了一系列不同结构类型的镍基金属有机框架,包括分隔的MIL-88-acs(pacs)、中断的pacs(i-pacs)和UMCM-1-muo。在muo平台上,两种截然不同的化学体系之间建立了一种新型的等规化学。进行了气体吸附和电催化研究,结果显示出优异的性能,例如在298K和1bar下,CH/CO选择性高达21.8,CH吸附容量高达114.5 cm/g。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验