Thiemens Maxwell M, Sprung Peter, Fonseca Raúl O C, Leitzke Felipe P, Münker Carsten
Institut für Geologie und Mineralogie, Universität zu Köln, Germany.
Hot Laboratory Division (AHL), Paul Scherrer Institut, Villigen, Switzerland.
Nat Geosci. 2019 Sep;12(9):696-700. doi: 10.1038/s41561-019-0398-3. Epub 2019 Jul 29.
The date of the Moon-forming impact places an important constraint on Earth's origin. Lunar age estimates range from about 30 Myr to 200 Myr after solar system formation. Central to this age debate is the greater abundance of W inferred for the silicate Moon than for the bulk silicate Earth. This compositional difference has been explained as a vestige of less late accretion to the Moon than the Earth, following core formation. Here we present high-precision trace element composition data from inductively coupled plasma mass spectrometry for a wide range of lunar samples. Our measurements show that the Hf/W ratio of the silicate Moon is higher than that of the bulk silicate Earth. By combining these data with experimentally derived partition coefficients, we find that the W excess in lunar samples can be explained by the decay of now extinct Hf to W. Hf was only extant for the first 60 Myr after solar system formation. We conclude that the Moon formed early, approximately 50 Myr after the solar system, and that the excess W of the silicate Moon is unrelated to late accretion.
形成月球的撞击事件的日期对地球的起源有着重要的限制。月球年龄估计值在太阳系形成后的约3000万年至2亿年之间。这场年龄之争的核心在于,推断出的硅酸盐月球中的钨含量比整体硅酸盐地球中的更为丰富。这种成分差异被解释为在核心形成之后,月球后期吸积的物质比地球少的一种遗迹。在此,我们展示了通过电感耦合等离子体质谱法获得的一系列月球样本的高精度微量元素组成数据。我们的测量结果表明,硅酸盐月球的铪/钨比值高于整体硅酸盐地球。通过将这些数据与实验得出的分配系数相结合,我们发现月球样本中过量的钨可以用现已灭绝的铪衰变为钨来解释。铪仅在太阳系形成后的最初6000万年存在。我们得出结论,月球形成得很早,大约在太阳系形成后的5000万年,并且硅酸盐月球中过量的钨与后期吸积无关。