Suppr超能文献

关于类地月球形成撞击体的地球化学论据。

Geochemical arguments for an Earth-like Moon-forming impactor.

作者信息

Dauphas Nicolas, Burkhardt Christoph, Warren Paul H, Fang-Zhen Teng

机构信息

Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA

Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130244. doi: 10.1098/rsta.2013.0244.

Abstract

Geochemical evidence suggests that the material accreted by the Earth did not change in nature during Earth's accretion, presumably because the inner protoplanetary disc had uniform isotopic composition similar to enstatite chondrites, aubrites and ungrouped achondrite NWA 5363/5400. Enstatite meteorites and the Earth were derived from the same nebular reservoir but diverged in their chemical evolutions, so no chondrite sample in meteorite collections is representative of the Earth's building blocks. The similarity in isotopic composition (Δ(17)O, ε(50)Ti and ε(54)Cr) between lunar and terrestrial rocks is explained by the fact that the Moon-forming impactor came from the same region of the disc as other Earth-forming embryos, and therefore was similar in isotopic composition to the Earth. The heavy δ(30)Si values of the silicate Earth and the Moon relative to known chondrites may be due to fractionation in the solar nebula/protoplanetary disc rather than partitioning of silicon in Earth's core. An inversion method is presented to calculate the Hf/W ratios and ε(182)W values of the proto-Earth and impactor mantles for a given Moon-forming impact scenario. The similarity in tungsten isotopic composition between lunar and terrestrial rocks is a coincidence that can be explained in a canonical giant impact scenario if an early formed embryo (two-stage model age of 10-20 Myr) collided with the proto-Earth formed over a more protracted accretion history (two-stage model age of 30-40 Myr).

摘要

地球化学证据表明,在地球吸积过程中,其所吸积的物质在性质上并未发生变化,大概是因为内原行星盘具有与顽火辉石球粒陨石、透辉橄无球粒陨石和未分类无球粒陨石NWA 5363/5400相似的均匀同位素组成。顽火辉石陨石和地球源自同一个星云储库,但在化学演化过程中出现了分歧,因此陨石收藏中的任何球粒陨石样本都不能代表构成地球的物质。月球岩石和地球岩石在同位素组成(Δ(17)O、ε(50)Ti和ε(54)Cr)上的相似性可以这样解释:形成月球的撞击体与其他形成地球的胚胎来自盘的同一区域,因此在同位素组成上与地球相似。相对于已知球粒陨石,硅酸盐地球和月球的重δ(30)Si值可能是由于太阳星云/原行星盘中的分馏作用,而非硅在地球核心中的分配。本文提出了一种反演方法,用于在给定的形成月球的撞击情景下,计算原地球和撞击体地幔的Hf/W比值和ε(182)W值。月球岩石和地球岩石在钨同位素组成上的相似性是一种巧合,如果一个早期形成的胚胎(两阶段模型年龄为10 - 20百万年)与一个在更长吸积历史(两阶段模型年龄为30 - 40百万年)中形成的原地球发生碰撞,那么在标准的巨型撞击情景中就可以对此做出解释。

相似文献

1
Geochemical arguments for an Earth-like Moon-forming impactor.
Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130244. doi: 10.1098/rsta.2013.0244.
2
The isotopic nature of the Earth's accreting material through time.
Nature. 2017 Jan 25;541(7638):521-524. doi: 10.1038/nature20830.
3
Oxygen isotopic evidence for accretion of Earth's water before a high-energy Moon-forming giant impact.
Sci Adv. 2018 Mar 28;4(3):eaao5928. doi: 10.1126/sciadv.aao5928. eCollection 2018 Mar.
4
Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon.
Nature. 2015 Apr 23;520(7548):530-3. doi: 10.1038/nature14355. Epub 2015 Apr 8.
5
A young Moon-forming giant impact at 70-110 million years accompanied by late-stage mixing, core formation and degassing of the Earth.
Philos Trans A Math Phys Eng Sci. 2008 Nov 28;366(1883):4163-81. doi: 10.1098/rsta.2008.0209.
6
The Earth's missing lead may not be in the core.
Nature. 2008 Nov 6;456(7218):89-92. doi: 10.1038/nature07375.
7
Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon.
Nature. 2018 Mar 21;555(7697):507-510. doi: 10.1038/nature25990.
8
Isotopic evidence for the formation of the Moon in a canonical giant impact.
Nat Commun. 2021 Mar 22;12(1):1817. doi: 10.1038/s41467-021-22155-7.
9
Nd isotope variation between the Earth-Moon system and enstatite chondrites.
Nature. 2022 Nov;611(7936):501-506. doi: 10.1038/s41586-022-05265-0. Epub 2022 Oct 6.
10
Fast accretion of the earth with a late moon-forming giant impact.
Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17604-9. doi: 10.1073/pnas.1108544108. Epub 2011 Oct 17.

引用本文的文献

1
Oxygen isotope identity of the Earth and Moon with implications for the formation of the Moon and source of volatiles.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2321070121. doi: 10.1073/pnas.2321070121. Epub 2024 Dec 16.
2
Early Moon formation inferred from Hafnium-Tungsten systematics.
Nat Geosci. 2019 Sep;12(9):696-700. doi: 10.1038/s41561-019-0398-3. Epub 2019 Jul 29.
3
Asteroid bombardment and the core of Theia as possible sources for the Earth's late veneer component.
Geochem Geophys Geosyst. 2016 Jul;17(7):2623-2642. doi: 10.1002/2016gc006305. Epub 2016 Jun 15.
4
Timing of Martian Core Formation from Models of Hf-W Evolution Coupled with -body Simulations.
Geochim Cosmochim Acta. 2022 Jan 1;316:295-308. doi: 10.1016/j.gca.2021.09.022. Epub 2021 Sep 25.
5
Isotopic evidence for the formation of the Moon in a canonical giant impact.
Nat Commun. 2021 Mar 22;12(1):1817. doi: 10.1038/s41467-021-22155-7.
7
LUNAR VOLATILE DEPLETION DUE TO INCOMPLETE ACCRETION WITHIN AN IMPACT-GENERATED DISK.
Nat Geosci. 2015;8:918-921. doi: 10.1038/ngeo2574. Epub 2015 Nov 9.
8
Effects of core formation on the Hf-W isotopic composition of the Earth and dating of the Moon-forming impact.
Earth Planet Sci Lett. 2018 Oct 1;499:257-265. doi: 10.1016/j.epsl.2018.07.030. Epub 2018 Aug 7.
9
Tungsten Isotopes in Planets.
Annu Rev Earth Planet Sci. 2017 Aug;45:389-417. doi: 10.1146/annurev-earth-063016-020037. Epub 2017 Jun 7.
10
Siderophile Elements in Tracing Planetary Formation and Evolution.
Geochem Perspect. 2016;5(1):1-145. doi: 10.7185/geochempersp.5.1. Epub 2016 Apr 1.

本文引用的文献

1
Identification of the giant impactor Theia in lunar rocks.
Science. 2014 Jun 6;344(6188):1146-50. doi: 10.1126/science.1251117.
2
Geochemistry: Sulphur from heaven and hell.
Nature. 2013 Sep 12;501(7466):175-6. doi: 10.1038/nature12554. Epub 2013 Sep 4.
3
Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer.
Nature. 2013 Jul 18;499(7458):328-31. doi: 10.1038/nature12285.
4
The crust of the Moon as seen by GRAIL.
Science. 2013 Feb 8;339(6120):671-5. doi: 10.1126/science.1231530. Epub 2012 Dec 5.
5
Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning.
Science. 2012 Nov 23;338(6110):1047-52. doi: 10.1126/science.1225542. Epub 2012 Oct 17.
6
Forming a Moon with an Earth-like composition via a giant impact.
Science. 2012 Nov 23;338(6110):1052-5. doi: 10.1126/science.1226073. Epub 2012 Oct 17.
7
Zinc isotopic evidence for the origin of the Moon.
Nature. 2012 Oct 18;490(7420):376-9. doi: 10.1038/nature11507.
8
Evidence against a chondritic Earth.
Nature. 2012 Mar 28;483(7391):553-8. doi: 10.1038/nature10901.
9
Silicon isotope evidence against an enstatite chondrite Earth.
Science. 2012 Mar 23;335(6075):1477-80. doi: 10.1126/science.1219509. Epub 2012 Mar 1.
10
Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo.
Nature. 2011 May 26;473(7348):489-92. doi: 10.1038/nature10077.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验