Suppr超能文献

中风后患手的意志控制增加手指僵硬程度及对机器人辅助运动的抵抗力。

Volitional Control of the Paretic Hand Post-Stroke Increases Finger Stiffness and Resistance to Robot-Assisted Movement.

作者信息

Chen Ava, Lee Katelyn, Winterbottom Lauren, Xu Jingxi, Lee Connor, Munger Grace, Deli-Ivanov Alexandra, Nilsen Dawn M, Stein Joel, Ciocarlie Matei

机构信息

Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.

Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.

出版信息

Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2024 Sep;2024:1670-1675. doi: 10.1109/biorob60516.2024.10719809. Epub 2024 Oct 23.

Abstract

Increased effort during use of the paretic arm and hand can provoke involuntary abnormal synergy patterns and amplify stiffness effects of muscle tone for individuals after stroke, which can add difficulty for user-controlled devices to assist hand movement during functional tasks. We study how volitional effort, exerted in an attempt to open or close the hand, affects resistance to robot-assisted movement at the finger level. We perform experiments with three chronic stroke survivors to measure changes in stiffness when the user is actively exerting effort to activate ipsilateral EMG-controlled robot-assisted hand movements, compared with when the fingers are passively stretched, as well as overall effects from sustained active engagement and use. Our results suggest that active engagement of the upper extremity increases muscle tone in the finger to a much greater degree than through passive-stretch or sustained exertion over time. Potential design implications of this work suggest that developers should anticipate higher levels of finger stiffness when relying on user-driven ipsilateral control methods for assistive or rehabilitative devices for stroke.

摘要

对于中风后的个体,使用患侧手臂和手部时增加用力会引发非自愿的异常协同模式,并放大肌张力的僵硬效应,这会给用户控制的设备在功能任务期间辅助手部运动增加困难。我们研究了试图张开或闭合手部时施加的自主用力如何影响手指水平上对机器人辅助运动的阻力。我们对三名慢性中风幸存者进行实验,以测量用户主动用力激活同侧肌电图控制的机器人辅助手部运动时的僵硬变化,与手指被动伸展时相比,以及持续主动参与和使用的总体效果。我们的结果表明,上肢的主动参与使手指的肌张力增加的程度远大于被动伸展或随时间持续用力。这项工作的潜在设计意义表明,对于中风辅助或康复设备,开发者在依赖用户驱动的同侧控制方法时应预计到手指有更高程度的僵硬。

相似文献

1
Volitional Control of the Paretic Hand Post-Stroke Increases Finger Stiffness and Resistance to Robot-Assisted Movement.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2024 Sep;2024:1670-1675. doi: 10.1109/biorob60516.2024.10719809. Epub 2024 Oct 23.
3
Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke.
Clin Neurophysiol. 2012 Jun;123(6):1216-25. doi: 10.1016/j.clinph.2012.01.009. Epub 2012 Feb 22.
4
User-Driven Functional Movement Training With a Wearable Hand Robot After Stroke.
IEEE Trans Neural Syst Rehabil Eng. 2020 Oct;28(10):2265-2275. doi: 10.1109/TNSRE.2020.3021691. Epub 2020 Sep 4.
5
An online method to monitor hand muscle tone during robot-assisted rehabilitation.
Front Robot AI. 2023 Feb 6;10:1093124. doi: 10.3389/frobt.2023.1093124. eCollection 2023.
6
Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
Disabil Rehabil Assist Technol. 2015 Mar;10(2):149-59. doi: 10.3109/17483107.2013.873491. Epub 2013 Dec 31.
9
The Impact of Shoulder Abduction Loading on Volitional Hand Opening and Grasping in Chronic Hemiparetic Stroke.
Neurorehabil Neural Repair. 2017 Jun;31(6):521-529. doi: 10.1177/1545968317697033. Epub 2017 Mar 8.

本文引用的文献

1
Adaptive Semi-Supervised Intent Inferral to Control a Powered Hand Orthosis for Stroke.
IEEE Int Conf Robot Autom. 2022 May;2022:8097-8103. doi: 10.1109/icra46639.2022.9811932. Epub 2022 Jul 12.
2
An online method to monitor hand muscle tone during robot-assisted rehabilitation.
Front Robot AI. 2023 Feb 6;10:1093124. doi: 10.3389/frobt.2023.1093124. eCollection 2023.
4
Thumb Stabilization and Assistance in a Robotic Hand Orthosis for Post-Stroke Hemiparesis.
IEEE Robot Autom Lett. 2022 Jul;7(3):8276-8282. doi: 10.1109/lra.2022.3185365. Epub 2022 Jun 22.
5
The Assessment of Upper-Limb Spasticity Based on a Multi-Layer Process Using a Portable Measurement System.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:2242-2251. doi: 10.1109/TNSRE.2021.3121780. Epub 2021 Nov 3.
6
Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review.
Disabil Rehabil Assist Technol. 2023 Jul;18(5):658-672. doi: 10.1080/17483107.2021.1906960. Epub 2021 Apr 16.
7
Characteristics of the severely impaired hand in survivors of stroke with chronic impairments.
Top Stroke Rehabil. 2022 Apr;29(3):181-191. doi: 10.1080/10749357.2021.1894660. Epub 2021 Mar 3.
8
Quantitative Modeling of Spasticity for Clinical Assessment, Treatment and Rehabilitation.
Sensors (Basel). 2020 Sep 5;20(18):5046. doi: 10.3390/s20185046.
9
User-Driven Functional Movement Training With a Wearable Hand Robot After Stroke.
IEEE Trans Neural Syst Rehabil Eng. 2020 Oct;28(10):2265-2275. doi: 10.1109/TNSRE.2020.3021691. Epub 2020 Sep 4.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验