Hayashi Shun, Momma Koichi, Adachi Kiyohiro, Hashizume Daisuke
Division of Physical Sciences, Department of Science and Engineering, National Museum of Nature and Science, Ibaraki 305-0005, Japan.
Division of Mineral Sciences, Department of Geology and Paleontology, National Museum of Nature and Science, Ibaraki 305-0005, Japan.
ACS Org Inorg Au. 2024 Nov 19;4(6):705-711. doi: 10.1021/acsorginorgau.4c00071. eCollection 2024 Dec 4.
Amide hydrogenation is an important process for producing amines, with the development of efficient heterogeneous catalysts relying on the creation of bimetallic active sites where the two components interact synergistically. In this study, we develop a method for preparing catalysts using ligand-functionalized organometallic polyoxometalates by synthesizing a Rh-Mo organometallic polyoxometalate, [(RhCp)MoO] (Cp = C(CH)(COOCH)), with Rh-O-Mo interfacial structures and ethoxycarbonyl-functionalized ligands as a catalyst precursor. The activity of supported Rh-Mo catalysts for amide hydrogenation depend on the precursor used, with [(RhCp)MoO] showing the highest activity, followed by [(RhCp*)MoO] (Cp* = C(CH)), and then RhCl combined with (NH)[MoO]·4HO. The catalyst prepared from [(RhCp)MoO] effectively hydrogenates tertiary, secondary, and primary amides under mild conditions (0.8 MPa H, 353-393 K), demonstrating a high activity and selectivity (conversion: 97%, selectivity: 76%) for primary amide hydrogenation under NH-free conditions. Furthermore, we determine that carbonyl oxygen atoms in Cp ligands contribute to the electrostatic interaction with AlO, leading to the high dispersibility of [(RhCp)MoO] on the support. We conclude that the high efficiency of [(RhCp)MoO] as a catalyst precursor originates from the effective formation of Rh/Mo interfacial active sites, which is assisted by the electrostatic interaction between the Cp ligands and support.
酰胺氢化是生产胺类的重要过程,高效多相催化剂的开发依赖于双金属活性位点的创建,其中两种组分协同相互作用。在本研究中,我们通过合成具有Rh-O-Mo界面结构和乙氧羰基官能化配体的Rh-Mo有机金属多金属氧酸盐[(RhCp)MoO](Cp = C(CH)(COOCH))作为催化剂前体,开发了一种使用配体官能化有机金属多金属氧酸盐制备催化剂的方法。负载型Rh-Mo催化剂对酰胺氢化的活性取决于所用的前体,[(RhCp)MoO]表现出最高活性,其次是[(RhCp*)MoO](Cp* = C(CH)),然后是RhCl与(NH)[MoO]·4HO组合。由[(RhCp)MoO]制备的催化剂在温和条件下(0.8 MPa H,353 - 393 K)能有效地氢化叔酰胺、仲酰胺和伯酰胺,在无NH条件下对伯酰胺氢化表现出高活性和选择性(转化率:97%,选择性:76%)。此外,我们确定Cp配体中的羰基氧原子有助于与AlO的静电相互作用,导致[(RhCp)MoO]在载体上具有高分散性。我们得出结论,[(RhCp)MoO]作为催化剂前体的高效率源于Rh/Mo界面活性位点的有效形成,这得益于Cp配体与载体之间的静电相互作用。