Suppr超能文献

一种考虑多种约束的行程推荐的改进遗传算法解决方案。

An enhanced genetic algorithm solution for itinerary recommendation considering various constraints.

作者信息

Şehab Muhammed, Turan Metin

机构信息

Computer Technology Department, Avrupa Vocational School, Kocaeli Health and Technology University, Kocaeli, Turkey.

Computer Engineering Department, Istanbul Ticaret University, Istanbul, Turkey.

出版信息

PeerJ Comput Sci. 2024 Oct 2;10:e2340. doi: 10.7717/peerj-cs.2340. eCollection 2024.

Abstract

This paper addresses the challenging task of itinerary recommendation for tourists and proposes an approach for suggesting efficient optimal itineraries in Istanbul, based on constraints. The paper presents an enhanced version of the genetic algorithm (GA), which aims to optimize the itineraries considering various constraints and preferences of the tourists. The improvement of the GA involved suggesting a customized fitness function tailored to address the complexities of the tourism problem, considering factors such as distance, time, cost, tourists' budget, and their desired activities and attractions. Additionally, we proposed a new crossover method, named "Copy Order Crossover" and we modified the tournament selection method beside enhancing the implementation of the swap mutation method for greater efficiency and adaptability. The enhanced GA is evaluated on the Burma dataset taken from TSPLIB, and our constructed Istanbul dataset, achieving significant enhancement rates in GA (43.89% for Istanbul, and 56.60% for Burma). This paper provides a detailed account of the proposed approach, its implementation, and the evaluation conducted. The experimental results conclusively demonstrated the superiority of the proposed approach over alternative methods in terms of time, efficiency, and accuracy. This paper finishes with an outlook with a detailed potential approach to overcome itinerary recommendation problem limitations.

摘要

本文探讨了为游客推荐行程这一具有挑战性的任务,并提出了一种基于约束条件在伊斯坦布尔推荐高效最优行程的方法。本文介绍了遗传算法(GA)的一个改进版本,旨在考虑游客的各种约束条件和偏好来优化行程。GA的改进包括提出一个定制的适应度函数,该函数考虑了距离、时间、成本、游客预算以及他们期望的活动和景点等因素,以应对旅游问题的复杂性。此外,我们提出了一种名为“复制顺序交叉”的新交叉方法,修改了锦标赛选择方法,并改进了交换变异方法的实现,以提高效率和适应性。在取自TSPLIB的缅甸数据集以及我们构建的伊斯坦布尔数据集上对改进后的GA进行了评估,GA实现了显著的提升率(伊斯坦布尔为43.89%,缅甸为56.60%)。本文详细介绍了所提出的方法、其实现过程以及进行的评估。实验结果确凿地证明了所提出的方法在时间、效率和准确性方面优于其他替代方法。本文最后展望了一种克服行程推荐问题局限性的详细潜在方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ae8/11623113/0294ccde8f82/peerj-cs-10-2340-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验