Suppr超能文献

演化图上的动态频繁子图挖掘算法:综述

Dynamic frequent subgraph mining algorithms over evolving graphs: a survey.

作者信息

Ergenç Bostanoğlu Belgin, Abuzayed Nourhan

机构信息

Computer Engineering, Izmir Institute of Technology, Izmir, Turkey.

出版信息

PeerJ Comput Sci. 2024 Oct 8;10:e2361. doi: 10.7717/peerj-cs.2361. eCollection 2024.

Abstract

Frequent subgraph mining (FSM) is an essential and challenging graph mining task used in several applications of the modern data science. Some of the FSM algorithms have the objective of finding all frequent subgraphs whereas some of the algorithms focus on discovering frequent subgraphs approximately. On the other hand, modern applications employ evolving graphs where the increments are small graphs or stream of nodes and edges. In such cases, FSM task becomes more challenging due to growing data size and complexity of the base algorithms. Recently we see frequent subgraph mining algorithms designed for dynamic graph data. However, there is no comparative review of the dynamic subgraph mining algorithms focusing on the discovery of frequent subgraphs over evolving graph data. This article focuses on the characteristics of dynamic frequent subgraph mining algorithms over evolving graphs. We first introduce and compare dynamic frequent subgraph mining algorithms; trying to highlight their attributes as increment type, graph type, graph representation, internal data structure, algorithmic approach, programming approach, base algorithm and output type. Secondly, we introduce and compare the approximate frequent subgraph mining algorithms for dynamic graphs with additional attributes as their sampling strategy, data in the sample, statistical guarantees on the sample and their main objective. Finally, we highlight research opportunities in this specific domain from our perspective. Overall, we aim to introduce the research area of frequent subgraph mining over evolving graphs with the hope that this can serve as a reference and inspiration for the researchers of the field.

摘要

频繁子图挖掘(FSM)是现代数据科学的多个应用中一项重要且具有挑战性的图挖掘任务。一些FSM算法旨在找出所有频繁子图,而另一些算法则专注于近似发现频繁子图。另一方面,现代应用采用不断演化的图,其中增量是小图或节点与边的流。在这种情况下,由于数据规模不断增大以及基础算法的复杂性,FSM任务变得更具挑战性。最近,我们看到了为动态图数据设计的频繁子图挖掘算法。然而,尚未有针对动态子图挖掘算法的比较性综述,该综述聚焦于在不断演化的图数据上发现频繁子图。本文关注在不断演化的图上动态频繁子图挖掘算法的特点。我们首先介绍并比较动态频繁子图挖掘算法;试图突出它们在增量类型、图类型、图表示、内部数据结构、算法方法、编程方法、基础算法和输出类型等方面的属性。其次,我们介绍并比较具有附加属性(如采样策略、样本中的数据、样本的统计保证及其主要目标)的动态图近似频繁子图挖掘算法。最后,我们从自身角度突出该特定领域的研究机会。总体而言,我们旨在介绍在不断演化的图上进行频繁子图挖掘的研究领域,希望这能为该领域的研究人员提供参考和启发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验