Suppr超能文献

一种用于网络入侵检测的具有先进特征选择的优化集成模型。

An optimized ensemble model with advanced feature selection for network intrusion detection.

作者信息

Ahmed Afaq, Asim Muhammad, Ullah Irshad, Ateya Abdelhamied A

机构信息

School of Computer Science and Engineering, Central South University, Changsha, Hunan, China.

EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2024 Nov 26;10:e2472. doi: 10.7717/peerj-cs.2472. eCollection 2024.

Abstract

In today's digital era, advancements in technology have led to unparalleled levels of connectivity, but have also brought forth a new wave of cyber threats. Network Intrusion Detection Systems (NIDS) are crucial for ensuring the security and integrity of networked systems by identifying and mitigating unauthorized access and malicious activities. Traditional machine learning techniques have been extensively employed for this purpose due to their high accuracy and low false alarm rates. However, these methods often fall short in detecting sophisticated and evolving threats, particularly those involving subtle variations or mutations of known attack patterns. To address this challenge, our study presents the "Optimized Random Forest (Opt-Forest)," an innovative ensemble model that combines decision forest approaches with genetic algorithms (GAs) for enhanced intrusion detection. The genetic algorithms based decision forest construction offers notable benefits by traversing a wider exploration space and mitigating the risk of becoming stuck in local optima, resulting in the discovery of more accurate and compact decision trees. Leveraging advanced feature selection techniques, including Best-First Search, Particle Swarm Optimization (PSO), Evolutionary Search, and Genetic Search (GS), along with contemporary dataset, this research aims to enhance the adaptability and resilience of NIDS against modern cyber threats. We conducted a comprehensive evaluation of the proposed approach against several well-known machine learning models, including AdaBoostM1 (AbM1), K-nearest neighbor (KNN), J48-Decision Tree (J48), multilayer perceptron (MLP), stochastic gradient descent (SGD), naïve Bayes (NB), and logistic model tree (LMT). The comparative analysis demonstrates the effectiveness and superiority of our method across various performance metrics, highlighting its potential to significantly enhance the capabilities of network intrusion detection systems.

摘要

在当今数字时代,技术进步带来了前所未有的连接水平,但也引发了新一轮网络威胁。网络入侵检测系统(NIDS)对于通过识别和缓解未经授权的访问及恶意活动来确保网络系统的安全性和完整性至关重要。传统机器学习技术因其高精度和低误报率而被广泛用于此目的。然而,这些方法在检测复杂且不断演变的威胁时往往不足,特别是那些涉及已知攻击模式细微变化或变异的威胁。为应对这一挑战,我们的研究提出了“优化随机森林(Opt-Forest)”,这是一种创新的集成模型,它将决策森林方法与遗传算法(GA)相结合以增强入侵检测能力。基于遗传算法的决策森林构建通过遍历更广泛的探索空间并降低陷入局部最优的风险,带来了显著优势,从而发现更准确、更紧凑的决策树。利用包括最佳优先搜索、粒子群优化(PSO)、进化搜索和遗传搜索(GS)在内的先进特征选择技术,以及当代数据集,本研究旨在提高NIDS对现代网络威胁的适应性和抵御能力。我们针对几种知名机器学习模型,包括AdaBoostM1(AbM1)、K近邻(KNN)、J48决策树(J48)、多层感知器(MLP)、随机梯度下降(SGD)、朴素贝叶斯(NB)和逻辑模型树(LMT),对所提出的方法进行了全面评估。对比分析证明了我们的方法在各种性能指标上的有效性和优越性,突出了其显著增强网络入侵检测系统能力的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e67e/11623070/993452b5dd9e/peerj-cs-10-2472-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验