Suppr超能文献

一种用于工业应用推荐系统的基于增强集成模糊逻辑的深度学习技术(EIFL-DL)。

An enhanced integrated fuzzy logic-based deep learning techniques (EIFL-DL) for the recommendation system on industrial applications.

作者信息

Rafique Yasir, Wu Jue, Muzaffar Abdul Wahab, Rafique Bilal

机构信息

School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China.

College of Computing and Informatics, Saudi Electronics University, Riyadh, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2024 Nov 22;10:e2529. doi: 10.7717/peerj-cs.2529. eCollection 2024.

Abstract

Industrial organizations are turning to recommender systems (RSs) to provide more personalized experiences to customers. This technology provides an efficient solution to the over-choice problem by quickly combing through large amounts of information and supplying recommendations that fit each user's individual preferences. It is quickly becoming an integral part of operations, as it yields successful and convenient results. This research provides an enhanced integrated fuzzy logic-based deep learning technique (EIFL-DL) for recent industrial challenges. Extracting useful insights and making appropriate suggestions in industrial settings is difficult due to the fast development of data. Traditional RSs often struggle to handle the complexity and uncertainty inherent in industrial data. To address these limitations, we propose an EIFL-DL framework that combines fuzzy logic and deep learning techniques to enhance recommendation accuracy and interpretability. The EIFL-DL framework leverages fuzzy logic to handle uncertainty and vagueness in industrial data. Fuzzy logic enables the modelling of imprecise and uncertain information, and the system is able to capture nuanced relationships and make more accurate recommendations. Deep learning techniques, on the other hand, excel at extracting complex patterns and features from large-scale data. By integrating fuzzy logic with deep learning, the EIFL-DL framework harnesses the strengths of both approaches to overcome the limitations of traditional RSs. The proposed framework consists of three main stages: data preprocessing, feature extraction, and recommendation generation. In the data preprocessing stage, industrial data is cleaned, normalized, and transformed into fuzzy sets to handle uncertainty. The feature extraction stage employs deep learning techniques, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), to extract meaningful features from the preprocessed data. Finally, the recommendation generation stage utilizes fuzzy logic-based rules and a hybrid recommendation algorithm to generate accurate and interpretable recommendations for industrial applications.

摘要

工业组织正在转向推荐系统(RSs),以便为客户提供更个性化的体验。这项技术通过快速梳理大量信息并提供符合每个用户个人偏好的推荐,为过度选择问题提供了一个有效的解决方案。由于其能产生成功且便捷的结果,它正迅速成为运营中不可或缺的一部分。本研究针对近期的工业挑战,提供了一种基于增强集成模糊逻辑的深度学习技术(EIFL-DL)。由于数据的快速发展,在工业环境中提取有用的见解并提出适当的建议很困难。传统的推荐系统常常难以处理工业数据中固有的复杂性和不确定性。为了解决这些局限性,我们提出了一个EIFL-DL框架,该框架将模糊逻辑和深度学习技术相结合,以提高推荐的准确性和可解释性。EIFL-DL框架利用模糊逻辑来处理工业数据中的不确定性和模糊性。模糊逻辑能够对不精确和不确定的信息进行建模,并且该系统能够捕捉细微的关系并做出更准确的推荐。另一方面,深度学习技术擅长从大规模数据中提取复杂的模式和特征。通过将模糊逻辑与深度学习相结合,EIFL-DL框架利用了两种方法的优势来克服传统推荐系统的局限性。所提出的框架包括三个主要阶段:数据预处理、特征提取和推荐生成。在数据预处理阶段,对工业数据进行清理、归一化,并转换为模糊集以处理不确定性。特征提取阶段采用深度学习技术,如卷积神经网络(CNN)和循环神经网络(RNN),从预处理后的数据中提取有意义的特征。最后,推荐生成阶段利用基于模糊逻辑的规则和混合推荐算法为工业应用生成准确且可解释的推荐。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验