Suppr超能文献

一种使用视网膜眼底图像进行糖尿病视网膜病变早期检测的混合深度学习框架。

A hybrid deep learning framework for early detection of diabetic retinopathy using retinal fundus images.

作者信息

Sushith Mishmala, Sathiya A, Kalaipoonguzhali V, Sathya V

机构信息

Department of Information Technology, Adithya Institute of Technology, Kurumbapalayam, Coimbatore, 641 107, India.

M.Kumarasamy College of Engineering (Autonomous), Thalavapalayam, Karur, 639113, India.

出版信息

Sci Rep. 2025 Apr 30;15(1):15166. doi: 10.1038/s41598-025-99309-w.

Abstract

Recent advancements in deep learning have significantly impacted medical image processing domain, enabling sophisticated and accurate diagnostic tools. This paper presents a novel hybrid deep learning framework that combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) for diabetic retinopathy (DR) early detection and progression monitoring using retinal fundus images. Utilizing the sequential nature of disease progression, the proposed method integrates temporal information across multiple retinal scans to enhance detection accuracy. The proposed model utilizes publicly available DRIVE and Kaggle diabetic retinopathy datasets to evaluate the performance. The benchmark datasets provide a diverse set of annotated retinal images and the proposed hybrid model employs a CNN to extract spatial features from retinal images. The spatial feature extraction is enhanced by multi-scale feature extraction to capture fine details and broader patterns. These enriched spatial features are then fed into an RNN with attention mechanism to capture temporal dependencies so that most relevant data aspects can be considered for analysis. This combined approach enables the model to consider both current and previous states of the retina, improving its ability to detect subtle changes indicative of early-stage DR. Proposed model experimental evaluation demonstrate the superior performance over traditional deep learning models like CNN, RNN, InceptionV3, VGG19 and LSTM in terms of both sensitivity and specificity, achieving 97.5% accuracy on the DRIVE dataset, 94.04% on the Kaggle dataset, 96.9% on the Eyepacs Dataset. This research work not only advances the field of automated DR detection but also provides a framework for utilizing temporal information in medical image analysis.

摘要

深度学习的最新进展对医学图像处理领域产生了重大影响,催生了精密且准确的诊断工具。本文提出了一种新颖的混合深度学习框架,该框架结合了卷积神经网络(CNN)和循环神经网络(RNN),用于利用视网膜眼底图像进行糖尿病视网膜病变(DR)的早期检测和病情进展监测。利用疾病进展的顺序性,该方法整合了多次视网膜扫描的时间信息,以提高检测准确性。所提出的模型利用公开可用的DRIVE和Kaggle糖尿病视网膜病变数据集来评估性能。基准数据集提供了一组多样的带注释视网膜图像,所提出的混合模型采用CNN从视网膜图像中提取空间特征。通过多尺度特征提取增强空间特征提取,以捕捉精细细节和更广泛的模式。然后将这些丰富的空间特征输入到具有注意力机制的RNN中,以捕捉时间依赖性,从而在分析时能够考虑最相关的数据方面。这种组合方法使模型能够考虑视网膜的当前和先前状态,提高其检测早期DR细微变化的能力。所提出模型的实验评估表明,在敏感性和特异性方面,其性能优于CNN、RNN、InceptionV3、VGG19和LSTM等传统深度学习模型,在DRIVE数据集上的准确率达到97.5%,在Kaggle数据集上为94.04%,在Eyepacs数据集上为96.9%。这项研究工作不仅推动了自动DR检测领域的发展,还为在医学图像分析中利用时间信息提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5111/12043946/3a9806470ffa/41598_2025_99309_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验