Suppr超能文献

通过计算智能方法实现无人机网关在树木繁茂环境中的自动扩展因子和位置定义,以实现最大化。

Automatic spread factor and position definition for UAV gateway through computational intelligence approach to maximize in wooded environments.

作者信息

Cardoso Caio M M, Macedo Alex S, Fernandes Filipe C, Cruz Hugo A O, Barros Fabrício J B, de Araújo Jasmine P L

机构信息

Postgraduate Program in Electrical Engineering, Universidade Federal do Pará, Belém, Pará, Brazil.

出版信息

PeerJ Comput Sci. 2024 Sep 27;10:e2237. doi: 10.7717/peerj-cs.2237. eCollection 2024.

Abstract

The emergence of long-range (LoRa) technology, together with the expansion of uncrewed aerial vehicles (UAVs) use in civil applications have brought significant advances to the Internet of Things (IoT) field. In this way, these technologies are used together in different scenarios, especially when it is necessary to have connectivity in remote and difficult-to-access locations, providing coverage and monitoring of greater areas. In this sense, this article seeks to determine the best positioning for the LoRa gateway coupled to the drone and the optimal spreading factor (SF) for signal transmission in a LoRa network, aiming to improve the connected devices (SNR), considering a suburban and densely wooded environment. Then, multi-layer perceptron (MLP) networks and generalized regression neural networks (GRNN) were trained to predict the signal behavior and determine the best network to represent this behavior. The MLP network presented the lowest RMSE, 2.41 dB, and was selected for use jointly with the bioinspired Grey-Wolf optimizer (GWO). The optimizer proved its effectiviness being able to adjust the number of UAVs used to obtain 100% coverage and determine the best SF used by the endnodes, guaranteeing a higher transmission rate and lower energy consumption.

摘要

长距离(LoRa)技术的出现,以及无人机在民用领域应用的扩展,给物联网(IoT)领域带来了重大进展。通过这种方式,这些技术在不同场景中一起使用,特别是在需要在偏远和难以到达的地点实现连接的情况下,可提供更大区域的覆盖和监测。从这个意义上说,本文旨在确定与无人机耦合的LoRa网关的最佳定位以及LoRa网络中信号传输的最佳扩频因子(SF),旨在在考虑郊区和树木繁茂环境的情况下提高连接设备的信噪比(SNR)。然后,训练多层感知器(MLP)网络和广义回归神经网络(GRNN)来预测信号行为并确定代表这种行为的最佳网络。MLP网络的均方根误差(RMSE)最低,为2.41 dB,并被选择与受生物启发的灰狼优化器(GWO)联合使用。该优化器证明了其有效性,能够调整使用的无人机数量以获得100%的覆盖范围,并确定终端节点使用的最佳SF,保证更高的传输速率和更低的能耗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/11622905/3c3943a18f03/peerj-cs-10-2237-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验