Rizzo Alessandro, Lemma Enrico Domenico, Pisano Filippo, Pisanello Marco, Sileo Leonardo, De Vittorio Massimo, Pisanello Ferruccio
Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy.
Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via per Monteroni, 73010 Lecce, Italy.
Microelectron Eng. 2018 May;192:88-95. doi: 10.1016/j.mee.2018.02.010.
Tapered and micro-structured optical fibers (TFs) recently emerged as a versatile tool to obtain dynamically addressable light delivery for optogenetic control of neural activity in the mammalian brain. Small apertures along a metal-coated and low-angle taper allow for controlling light delivery sites in the neural tissue by acting on the coupling angle of the light launched into the fiber. However, their realization is typically based on focused ion beam (FIB) milling, a high-resolution but time-consuming technique. In this work we describe a laser micromachining approach to pattern TFs edge in a faster, more versatile and cost-effective fashion. A four-axis piezoelectric stage is implemented to move and rotate the fiber during processing to realize micropatterns all-around the taper, enabling for complex light emission geometries with TFs.
锥形和微结构光纤(TFs)最近成为一种通用工具,用于实现动态可寻址的光传输,以对哺乳动物大脑中的神经活动进行光遗传学控制。沿着金属涂层的低角度锥形的小孔允许通过作用于射入光纤的光的耦合角来控制神经组织中的光传输位置。然而,它们的实现通常基于聚焦离子束(FIB)铣削,这是一种高分辨率但耗时的技术。在这项工作中,我们描述了一种激光微加工方法,以更快、更通用且更具成本效益的方式对TFs边缘进行图案化。在加工过程中采用四轴压电平台来移动和旋转光纤,以在锥形周围实现微图案,从而实现TFs的复杂光发射几何形状。