Pisanello Ferruccio, Mandelbaum Gil, Pisanello Marco, Oldenburg Ian A, Sileo Leonardo, Markowitz Jeffrey E, Peterson Ralph E, Della Patria Andrea, Haynes Trevor M, Emara Mohamed S, Spagnolo Barbara, Datta Sandeep Robert, De Vittorio Massimo, Sabatini Bernardo L
Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.
Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA.
Nat Neurosci. 2017 Aug;20(8):1180-1188. doi: 10.1038/nn.4591. Epub 2017 Jun 19.
Optogenetics promises precise spatiotemporal control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons, compared to standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs.
光遗传学有望利用光对神经过程进行精确的时空控制。然而,大脑内光照的空间范围难以控制,且无法使用标准光纤进行调节。我们证明,具有锥形尖端的光纤可用于照亮空间受限或较大的脑区。通过远程调整光纤的光输入角度,可在数毫米范围内改变锥形尖端的发光部分,而无需移动植入物。我们利用这种模式激活单个小鼠的背侧与腹侧纹状体,并揭示每种操作对运动行为的不同影响。相反,在光纤的整个数值孔径上注入光会导致整个锥形表面发光,与标准平面光纤刺激相比,实现了更广泛、更有效的神经元光遗传学激活。因此,锥形光纤允许进行聚焦或广泛的照明,可精确且动态地匹配实验需求。