Han Xu, Zhang Zhemin, Su Chih-Chia, Lyu Meinan, Miyagi Masaru, Yu Edward, Nieman Marvin T
Case Western Reserve University, School of Medicine, Cleveland, OH 44106.
bioRxiv. 2025 Feb 26:2024.11.27.625729. doi: 10.1101/2024.11.27.625729.
Platelets fulfill their essential physiological roles sensing the extracellular environment through their membrane proteins. The native membrane environment provides essential regulatory cues that impact the protein structure and mechanism of action. Single-particle cryogenic electron microscopy (cryo-EM) has transformed structural biology by allowing high-resolution structures of membrane proteins to be solved from homogeneous samples. Our recent breakthroughs in data processing now make it feasible to obtain atomic-level-resolution protein structures from crude preparations in their native environments by integrating cryo-EM with the "Build-and-Retrieve" (BaR) data processing methodology. We applied this iterative bottom-up methodology on resting human platelet membranes for an in-depth systems biology approach to uncover how lipids, metal binding, post-translational modifications, and co-factor associations in the native environment regulate platelet function at the molecular level. Here, we report using cryo-EM followed by the BaR method to solve the unmodified integrin αIIbβ3 structure directly from resting human platelet membranes in its inactivated and intermediate states at 2.75Å and 2.67Å, respectively. Further, we also solved a novel dimer conformation of αIIbβ3 at 2.85Å formed by two intermediate-states of αIIbβ3. This may indicate a previously unknown self-regulatory mechanism of αIIbβ3 in its native environment. In conclusion, our data show the power of using cryo-EM with the BaR method to determine three distinct structures including a novel dimer directly from natural sources. This approach allows us to identify unrecognized regulation mechanisms for proteins without artifacts due to purification processes. These data have the potential to enrich our understanding of platelet signaling circuitry.
血小板通过其膜蛋白感知细胞外环境,从而发挥其重要的生理作用。天然膜环境提供了影响蛋白质结构和作用机制的关键调节线索。单颗粒低温电子显微镜(cryo-EM)通过从均匀样品中解析膜蛋白的高分辨率结构,变革了结构生物学。我们最近在数据处理方面的突破,现在使得通过将cryo-EM与“构建与检索”(BaR)数据处理方法相结合,从天然环境中的粗制制剂中获得原子级分辨率的蛋白质结构成为可能。我们将这种自下而上的迭代方法应用于静息人血小板膜,采用深入的系统生物学方法,以揭示天然环境中的脂质、金属结合、翻译后修饰和辅因子结合如何在分子水平上调节血小板功能。在这里,我们报告使用cryo-EM然后结合BaR方法,分别从静息人血小板膜中直接解析未修饰的整合素αIIbβ3处于失活状态和中间状态时的结构,分辨率分别为2.75Å和2.67Å。此外,我们还解析了由αIIbβ3的两个中间状态形成的αIIbβ3的一种新型二聚体构象,分辨率为2.85Å。这可能表明αIIbβ3在其天然环境中存在一种先前未知的自我调节机制。总之,我们的数据显示了使用cryo-EM结合BaR方法来确定三种不同结构(包括直接从天然来源获得的一种新型二聚体)的能力。这种方法使我们能够识别蛋白质的未被认识的调节机制,而不会因纯化过程产生假象。这些数据有可能丰富我们对血小板信号通路的理解。