Suppr超能文献

工程化CRISPR碱基编辑器作为家族性自主神经功能异常的永久性治疗方法。

Engineered CRISPR-Base Editors as a Permanent Treatment for Familial Dysautonomia.

作者信息

Yun Shuqi, Chekuri Anil, Art Jennifer, Kondabolu Krishnakanth, Slaugenhaupt Susan A, Zeltner Nadja, Kleinstiver Benjamin P, Morini Elisabetta, Alves Christiano R R

机构信息

Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA.

Department of Pathology, Massachusetts General Hospital Research Institute, Boston, MA, USA.

出版信息

bioRxiv. 2024 Dec 20:2024.11.27.625322. doi: 10.1101/2024.11.27.625322.

Abstract

Familial dysautonomia (FD) is a fatal autosomal recessive congenital neuropathy caused by a T-to-C mutation in intron 20 of the () gene, which causes tissue-specific skipping of exon 20 and reduction of ELP1 protein. Here, we developed a base editor (BE) approach to precisely correct this mutation. By optimizing Cas9 variants and screening multiple gRNAs, we identified a combination that was able to promote up to 70% on-target editing in HEK293T cells harboring the T-to-C mutation. These editing levels were sufficient to restore exon 20 inclusion in the transcript. Moreover, we optimized an engineered dual intein-split system to deliver these constructs . Mediated by adeno-associated virus (AAV) delivery, this BE strategy effectively corrected the liver and brain splicing defects in a humanized FD mouse model carrying the T-to-C mutation and rescued the FD phenotype in iPSC-derived sympathetic neurons. Importantly, we observed minimal off-target editing demonstrating high levels of specificity with these optimized base editors. These findings establish a novel and highly precise BE-based therapeutic approach to correct the FD mutation and associated splicing defects and provide the foundation for the development of a transformative, permanent treatment for this devastating disease.

摘要

家族性自主神经功能障碍(FD)是一种致命的常染色体隐性先天性神经病变,由()基因第20内含子中的T到C突变引起,该突变导致外显子20的组织特异性跳跃和ELP1蛋白减少。在此,我们开发了一种碱基编辑器(BE)方法来精确校正此突变。通过优化Cas9变体并筛选多个引导RNA(gRNA),我们确定了一种组合,该组合能够在携带T到C突变的HEK293T细胞中促进高达70%的靶向编辑。这些编辑水平足以恢复转录本中外显子20的包含。此外,我们优化了一种工程化双内含肽分裂系统来递送这些构建体。由腺相关病毒(AAV)介导递送,这种BE策略有效地校正了携带T到C突变的人源化FD小鼠模型中的肝脏和大脑剪接缺陷,并挽救了诱导多能干细胞(iPSC)衍生的交感神经元中的FD表型。重要的是,我们观察到最小的脱靶编辑,证明这些优化的碱基编辑器具有高度特异性。这些发现建立了一种新颖且高度精确的基于BE的治疗方法来校正FD突变和相关的剪接缺陷,并为开发针对这种毁灭性疾病的变革性、永久性治疗奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验