Borthakur Kaushik, Sisk Thomas R, Panei Francesco P, Bonomi Massimiliano, Robustelli Paul
bioRxiv. 2024 Nov 26:2024.10.04.616700. doi: 10.1101/2024.10.04.616700.
Determining accurate atomic resolution conformational ensembles of intrinsically disordered proteins (IDPs) is extremely challenging. Molecular dynamics (MD) simulations provide atomistic conformational ensembles of IDPs, but their accuracy is highly dependent on the quality of physical models, or force fields, used. Here, we demonstrate how to determine accurate atomic resolution conformational ensembles of IDPs by integrating all-atom MD simulations with experimental data from nuclear magnetic resonance (NMR) spectroscopy and small-angle x-ray scattering (SAXS) with a simple, robust and fully automated maximum entropy reweighting procedure. We demonstrate that when this approach is applied with sufficient experimental data, IDP ensembles derived from different MD force fields converge to highly similar conformational distributions. The maximum entropy reweighting procedure presented here facilitates the integration of MD simulations with extensive experimental datasets and enables the calculation of accurate, force-field independent atomic resolution conformational ensembles of IDPs.
确定内在无序蛋白质(IDP)精确的原子分辨率构象集合极具挑战性。分子动力学(MD)模拟可提供IDP的原子构象集合,但其准确性高度依赖于所使用的物理模型(即力场)的质量。在此,我们展示了如何通过将全原子MD模拟与来自核磁共振(NMR)光谱和小角X射线散射(SAXS)的实验数据相结合,并采用一种简单、稳健且完全自动化的最大熵重加权程序,来确定IDP精确的原子分辨率构象集合。我们证明,当这种方法应用于足够的实验数据时,源自不同MD力场的IDP集合会收敛到高度相似的构象分布。本文提出的最大熵重加权程序有助于将MD模拟与广泛的实验数据集相结合,并能够计算出准确的、与力场无关的IDP原子分辨率构象集合。