Suppr超能文献

利用马尔可夫模型和构象群体的贝叶斯推断对非天然和环状肽折叠景观进行针对核磁共振测量的高分辨率调谐。

High-Resolution Tuning of Non-Natural and Cyclic Peptide Folding Landscapes against NMR Measurements Using Markov Models and Bayesian Inference of Conformational Populations.

作者信息

Nguyen Thi Dung, Raddi Robert M, Voelz Vincent A

机构信息

Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States.

出版信息

J Chem Theory Comput. 2025 Jun 24;21(12):6213-6225. doi: 10.1021/acs.jctc.5c00489. Epub 2025 Jun 9.

Abstract

The rational design of stable and highly preorganized non-native and/or cyclic peptides is a challenging task that requires atomically detailed insight into folded and unfolded conformational ensembles. In this work, we demonstrate how Markov models constructed from collections of simulated trajectories using general-purpose force fields can be reweighted against NMR measurements to produce accurate folding landscapes. Here, we model the folding landscapes of 12 linear and cyclic peptide β hairpin mimics studied by the Erdelyi group, with the goal of reproducing the effects of subtle chemical modifications on peptide folding stability. The Bayesian Inference of Conformational Populations (BICePs) algorithm was first used to refine Karplus parameters to obtain an optimal forward model for scalar coupling constants; then, BICePs was used to reweight conformational ensembles against experimental NMR observables (NOE distances, chemical shifts, and scalar couplings). Before reweighting, Markov models of the folding dynamics reasonably capture the key features of the folding landscape. Only after reweighting, however, do we obtain folding landscapes that agree with experimental trends. Compared to previous estimates of folded populations made using the NAMFIS algorithm, BICePs-reweighted landscapes predict that the introduction of a side chain hydrogen- or halogen-bonding group changes the folding stability by no more than 2 kJ mol. The overall agreement between simulated and experimental NMR observables suggests that our approach is highly robust, offering a reliable pathway for designing foldable non-natural and cyclic peptides.

摘要

合理设计稳定且高度预组织的非天然和/或环状肽是一项具有挑战性的任务,需要对折叠和未折叠的构象集合有原子级的详细了解。在这项工作中,我们展示了如何使用通用力场从模拟轨迹集合构建的马尔可夫模型根据核磁共振测量进行重新加权,以产生准确的折叠景观。在这里,我们对Erdelyi小组研究的12种线性和环状肽β发夹模拟物的折叠景观进行建模,目的是重现微妙化学修饰对肽折叠稳定性的影响。首先使用构象群体的贝叶斯推断(BICePs)算法来优化Karplus参数,以获得标量耦合常数的最佳正向模型;然后,使用BICePs根据实验核磁共振可观测量(核Overhauser效应距离、化学位移和标量耦合)对构象集合进行重新加权。在重新加权之前,折叠动力学的马尔可夫模型合理地捕捉了折叠景观的关键特征。然而,只有在重新加权之后,我们才获得与实验趋势一致的折叠景观。与之前使用NAMFIS算法对折叠群体的估计相比,BICePs重新加权的景观预测,引入侧链氢键或卤键基团对折叠稳定性的改变不超过2 kJ/mol。模拟和实验核磁共振可观测量之间的总体一致性表明,我们的方法具有很高的稳健性,为设计可折叠的非天然和环状肽提供了一条可靠的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验