Reuter Margaret M, Lev Katherine L, Albo Jon, Arora Harkirat Singh, Liu Nemo, Tan Shenghao, Shay Madeline R, Sarkar Debmalya, Robida Aaron, Sherman David H, Richardson Rudy J, Cira Nate J, Chandrasekaran Sriram
bioRxiv. 2024 Nov 25:2024.11.25.625231. doi: 10.1101/2024.11.25.625231.
Here, we present M2D2, a two-stage machine learning (ML) pipeline that identifies promising antimicrobial drug combinations, which are crucial for combating drug resistance. M2D2 addresses key challenges in drug combination discovery by predicting drug synergies using computationally generated drug-protein interaction data, thereby circumventing the need for expensive omics data. The model improves the accuracy of drug target identification using high-throughput experimental and computational methods via feedback between ML stages. M2D2's transparent framework provides mechanistic insights into drug interactions and was benchmarked against chemogenomics, transcriptomics, and metabolomics datasets. We experimentally validated M2D2 using high-throughput screening of 946 combinations of Food and Drug Administration (FDA)- approved drugs and antibiotics against . We discovered synergy between a cerebrovascular drug and a widely used penicillin antibiotic and validated predicted mechanisms of action using genome-wide CRISPR inhibition screens. M2D2 offers a transparent ML tool for rapidly designing combination therapies and guides repurposing efforts while providing mechanistic insights.
在此,我们展示了M2D2,这是一种两阶段机器学习(ML)管道,可识别有前景的抗菌药物组合,这对于对抗耐药性至关重要。M2D2通过使用计算生成的药物 - 蛋白质相互作用数据预测药物协同作用,解决了药物组合发现中的关键挑战,从而避免了对昂贵的组学数据的需求。该模型通过ML阶段之间的反馈,使用高通量实验和计算方法提高了药物靶点识别的准确性。M2D2的透明框架提供了对药物相互作用的机制性见解,并针对化学基因组学、转录组学和代谢组学数据集进行了基准测试。我们通过对946种美国食品药品监督管理局(FDA)批准的药物和抗生素组合进行高通量筛选,对M2D2进行了实验验证。我们发现了一种脑血管药物与一种广泛使用的青霉素抗生素之间的协同作用,并使用全基因组CRISPR抑制筛选验证了预测的作用机制。M2D2提供了一个透明的ML工具,用于快速设计联合疗法,并在提供机制性见解的同时指导药物重新利用的工作。