Suppr超能文献

在永磁偶极阱中对电子和正电子进行注入、约束及诊断。

Injection, confinement, and diagnosis of electrons and positrons in a permanent magnet dipole trap.

作者信息

von der Linden J, Nißl S, Deller A, Singer M, Belmore N, Hugenschmidt C P, Pedersen T Sunn, Saitoh H, Stenson E V

机构信息

Max Planck Institute for Plasma Physics, 85748 Garching & 17491 Greifswald, Germany.

Technische Universität München, 85748 Garching, Germany.

出版信息

Eur Phys J D At Mol Opt Phys. 2024;78(12):146. doi: 10.1140/epjd/s10053-024-00821-x. Epub 2024 Dec 5.

Abstract

ABSTRACT

Prerequisites for the goal of studying long-lived, magnetically confined, electron-positron pair plasmas in the laboratory include the injection of both species into the trap, long trapping times, and suitable diagnostic methods. Here we report recent progress on these tasks achieved in a simple dipole trap based on a supported permanent magnet. For the injection of electrons, both an drift technique (of a 2- A, 6-eV beam) and "edge injection" (from a filament emitting a few mA and biased to some tens of volts) have been demonstrated; the former is suitable for low-density beams with smaller spatial and velocity spreads, while the latter employs fluctuations arising from collective behavior. To diagnose the edge-injected electrons, image potentials and currents induced on a wall probe, the magnet case, and wall electrodes were measured. Confinement of drift-injected positrons, measured experimentally, exhibited at least two well-separated timescales. Simulations reproduced this qualitatively, using a simple model of elastic collisions with residual background gas, and point to small adjustments for increasing trapping times. In a major upgrade to diagnostic capabilities, 25 bismuth germanate detectors, placed in three reentrant ports, are able to localize annihilation gammas, which will be used in future experiments to distinguish between different loss channels.

摘要

摘要

在实验室中研究长寿命、磁约束电子-正电子对等离子体这一目标的前提条件包括将两种粒子注入陷阱、长捕获时间以及合适的诊断方法。在此,我们报告了在基于支撑永磁体的简单偶极陷阱中完成这些任务所取得的最新进展。对于电子注入,已证明了两种方法,即(2 - A、6 - eV束的)漂移技术和“边缘注入”(来自发射几毫安电流且偏置到几十伏的灯丝);前者适用于具有较小空间和速度展宽的低密度束,而后者利用集体行为产生的涨落。为了诊断边缘注入的电子,测量了壁探针、磁体外壳和壁电极上感应的镜像电势和电流。通过实验测量,漂移注入正电子的约束表现出至少两个明显分开的时间尺度。使用与残余背景气体弹性碰撞的简单模型进行的模拟定性地再现了这一结果,并指出了为增加捕获时间而进行的微小调整。在诊断能力的一次重大升级中,放置在三个凹入端口的25个锗酸铋探测器能够定位湮灭伽马射线,这将在未来实验中用于区分不同的损失通道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/676e/11621162/7b400f5ec0dc/10053_2024_821_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验