Suppr超能文献

最大最小效应的统计推断:识别多项研究中的稳定关联。

Statistical Inference for Maximin Effects: Identifying Stable Associations across Multiple Studies.

作者信息

Guo Zijian

机构信息

Department of Statistics, Rutgers University.

出版信息

J Am Stat Assoc. 2024;119(547):1968-1984. doi: 10.1080/01621459.2023.2233162. Epub 2023 Aug 4.

Abstract

Integrative analysis of data from multiple sources is critical to making generalizable discoveries. Associations consistently observed across multiple source populations are more likely to be generalized to target populations with possible distributional shifts. In this paper, we model the heterogeneous multi-source data with multiple high-dimensional regressions and make inferences for the maximin effect (Meinshausen, Bühlmann, AoS, 43(4), 1801-1830). The maximin effect provides a measure of stable associations across multi-source data. A significant maximin effect indicates that a variable has commonly shared effects across multiple source populations, and these shared effects may be generalized to a broader set of target populations. There are challenges associated with inferring maximin effects because its point estimator can have a non-standard limiting distribution. We devise a novel sampling method to construct valid confidence intervals for maximin effects. The proposed confidence interval attains a parametric length. This sampling procedure and the related theoretical analysis are of independent interest for solving other non-standard inference problems. Using genetic data on yeast growth in multiple environments, we demonstrate that the genetic variants with significant maximin effects have generalizable effects under new environments. The proposed method is implemented in the package Maximininfer available from CRAN.

摘要

对来自多个来源的数据进行综合分析对于得出可推广的发现至关重要。在多个源人群中持续观察到的关联更有可能推广到可能存在分布变化的目标人群。在本文中,我们使用多个高维回归对异质多源数据进行建模,并对极大极小效应进行推断(Meinshausen, Bühlmann, 《统计学年鉴》, 43(4), 1801 - 1830)。极大极小效应提供了一种衡量多源数据中稳定关联的方法。显著的极大极小效应表明一个变量在多个源人群中具有共同的共享效应,并且这些共享效应可能推广到更广泛的目标人群集合。推断极大极小效应存在挑战,因为其点估计量可能具有非标准的极限分布。我们设计了一种新颖的抽样方法来构建极大极小效应的有效置信区间。所提出的置信区间具有参数长度。这种抽样过程和相关的理论分析对于解决其他非标准推断问题具有独立的意义。利用酵母在多种环境下生长的遗传数据,我们证明了具有显著极大极小效应的遗传变异在新环境下具有可推广的效应。所提出的方法在可从CRAN获取的Maximininfer包中实现。

相似文献

4
Implementation of maximin efficient designs in dose-finding studies.
Pharm Stat. 2015 Jan-Feb;14(1):63-73. doi: 10.1002/pst.1660. Epub 2014 Nov 18.
8
Transfer Learning under High-dimensional Generalized Linear Models.高维广义线性模型下的迁移学习
J Am Stat Assoc. 2023;118(544):2684-2697. doi: 10.1080/01621459.2022.2071278. Epub 2022 Jun 27.

引用本文的文献

1
Robust Inference for Federated Meta-Learning.联邦元学习的稳健推理
J Am Stat Assoc. 2025 Feb 18. doi: 10.1080/01621459.2024.2443246.

本文引用的文献

3
Linear Hypothesis Testing in Linear Models With High-Dimensional Responses.具有高维响应的线性模型中的线性假设检验
J Am Stat Assoc. 2022;117(540):1738-1750. doi: 10.1080/01621459.2021.1884561. Epub 2021 Apr 27.
8
On the cross-population generalizability of gene expression prediction models.基于跨人群的基因表达预测模型的泛化能力。
PLoS Genet. 2020 Aug 14;16(8):e1008927. doi: 10.1371/journal.pgen.1008927. eCollection 2020 Aug.
10
The Missing Diversity in Human Genetic Studies.人类遗传研究中的缺失多样性。
Cell. 2019 Mar 21;177(1):26-31. doi: 10.1016/j.cell.2019.02.048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验