Suppr超能文献

使用绿色微藻地衣化菌株的代谢网络通量模型分析山梨醇生物合成。

Analyzing sorbitol biosynthesis using a metabolic network flux model of a lichenized strain of the green microalga .

作者信息

Nazem-Bokaee Hadi, Hom Erik F Y, Mathews Sarah, Gueidan Cécile

机构信息

Australian National Herbarium, National Research Collections Australia, NCMI, CSIRO, Canberra, Australia.

Synthetic Biology Future Science Platform, CSIRO, Canberra, Australia.

出版信息

Microbiol Spectr. 2025 Jan 7;13(1):e0366023. doi: 10.1128/spectrum.03660-23. Epub 2024 Dec 9.

Abstract

a unicellular terrestrial microalga found either free-living or in association with lichenized fungi, protects itself from desiccation by synthesizing and accumulating low-molecular-weight carbohydrates such as sorbitol. The metabolism of this algal species and the interplay of sorbitol biosynthesis with its growth, light absorption, and carbon dioxide fixation are poorly understood. Here, we used a recently available genome assembly for to develop a metabolic flux model and analyze the alga's metabolic capabilities, particularly, for sorbitol biosynthesis. The model contains 151 genes, 155 metabolites, and 194 unique metabolic reactions participating in 12 core metabolic pathways and five compartments. Both photoautotrophic and mixotrophic growths of were supported by the metabolic model. In the presence of glucose, mixotrophy led to higher biomass and sorbitol yields. Additionally, the model predicted increased starch biosynthesis at high light intensities during photoautotrophic growth, an indication that the "overflow hypothesis-stress-driven metabolic flux redistribution" could be applied to . Furthermore, the newly developed metabolic model of , iDco_core, captures both linear and cyclic electron flow schemes characterized in photosynthetic microorganisms and suggests a possible adaptation to fluctuating water availability during periods of desiccation. This work provides important new insights into the predicted metabolic capabilities of , including a potential biotechnological opportunity for industrial sorbitol biosynthesis.IMPORTANCELichenized green microalgae are vital components for the survival and growth of lichens in extreme environmental conditions. However, little is known about the metabolism and growth characteristics of these algae as individual microbes. This study aims to provide insights into some of the metabolic capabilities of , a lichenized green microalgae, using a recently assembled and annotated genome of the alga. For that, a metabolic flux model was developed simulating the metabolism of this algal species and allowing for studying the algal growth, light absorption, and carbon dioxide fixation during both photoautotrophic and mixotrophic growth, . An important capability of the new metabolic model of is capturing both linear and cyclic electron flow mechanisms characterized in several other microalgae. Moreover, the model predicts limits of the metabolic interplay between sorbitol biosynthesis and algal growth, which has potential applications in assisting the design of bio-based sorbitol production processes.

摘要

一种单细胞陆生微藻,可自由生活或与地衣化真菌共生,通过合成和积累低分子量碳水化合物如山梨醇来保护自身免受干燥影响。人们对这种藻类的代谢以及山梨醇生物合成与其生长、光吸收和二氧化碳固定之间的相互作用了解甚少。在这里,我们利用最近获得的该藻类基因组组装结果来开发一个代谢通量模型,并分析该藻类的代谢能力,特别是山梨醇生物合成能力。该模型包含151个基因、155种代谢物和194个独特的代谢反应,参与12条核心代谢途径和五个区室。该代谢模型支持该藻类的光合自养生长和混合营养生长。在有葡萄糖存在的情况下,混合营养导致更高的生物量和山梨醇产量。此外,该模型预测在光合自养生长期间高光强下淀粉生物合成增加,这表明“溢流假说——应激驱动的代谢通量重新分配”可应用于该藻类。此外,新开发的该藻类代谢模型iDco_core,捕捉了光合微生物中所特有的线性和循环电子流模式,并表明在干燥期间可能适应波动的水分可利用性。这项工作为该藻类预测的代谢能力提供了重要的新见解,包括工业山梨醇生物合成的潜在生物技术机会。

重要性

地衣化绿色微藻是地衣在极端环境条件下生存和生长的重要组成部分。然而,对于这些藻类作为单个微生物的代谢和生长特性知之甚少。本研究旨在利用该藻类最近组装和注释的基因组,深入了解一种地衣化绿色微藻的一些代谢能力。为此,开发了一个代谢通量模型,模拟该藻类的代谢,并允许研究光合自养生长和混合营养生长期间的藻类生长、光吸收和二氧化碳固定。该藻类新代谢模型的一个重要能力是捕捉了其他几种微藻中所特有的线性和循环电子流机制。此外,该模型预测了山梨醇生物合成与藻类生长之间代谢相互作用的限度,这在协助设计基于生物的山梨醇生产工艺方面具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dca/11705836/c40f9701df1d/spectrum.03660-23.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验