Sieber Xavier, Romanin Ludovica, Bastiaansen Jessica A M, Roy Christopher W, Yerly Jérôme, Wenz Daniel, Richiardi Jonas, Stuber Matthias, van Heeswijk Ruud B
Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland.
Magn Reson Med. 2025 May;93(5):1896-1910. doi: 10.1002/mrm.30390. Epub 2024 Dec 9.
To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time-efficient water-excitation (WE) RF pulses using B-spline interpolation, and to characterize their lipid suppression performance.
An evolutionary optimization algorithm was used to design WE RF pulses. The algorithm minimizes a composite loss function that quantifies the fat-water contrast using Bloch equation simulations. In a first study, B-spline interpolated optimized (BSIO) pulses designed with HydrOptiFrame with durations of 1 and 0.76 ms were generated for 3 T and characterized in healthy volunteers' knees. The femoral bone marrow SNR was compared to that obtained with to 1-1 WE and lipid insensitive binomial off resonant excitation (LIBRE) pulses. In a second study, in the heart at 1.5 T, the water-fat contrast ratio and coronary artery vessel length obtained with a 2.56 ms BSIO pulse was compared to 1-1 WE and LIBRE pulses in free-running cardiovascular MR.
The 1 ms BSIO pulse resulted in higher fat suppression and lower contrast ratio (CR) in the bone marrow than the state-of-the-art pulses (4.1 ± 0.2 vs. 4.7 ± 0.4 and 4.4 ± 0.3 for the BSIO, the 1-1 WE and LIBRE respectively, p < 0.05 vs. both) at 3 T. At 1.5 T, the BSIO pulse resulted in a higher blood-epicardial fat CR (3.8 ± 1.3 vs. 1.6 ± 0.6 and 2.4 ± 1.1 for the BSIO, 1-1 WE and LIBRE, respectively, p < 0.05 vs. both) and longer traceable left coronary artery vessel length (8.7 ± 1.4 cm vs. 7.0 ± 1.0 cm [p = 0.04] and 7.5 ± 1.2 cm [p = 0.09]).
The HydrOptiFrame framework offers a new opportunity to design WE RF pulses that are robust to B inhomogeneity at multiple magnetic field strengths and for variable RF pulse durations.
实现一个名为HydrOptiFrame的灵活框架,用于使用B样条插值设计和优化时间高效的水激发(WE)射频脉冲,并表征其脂肪抑制性能。
使用进化优化算法设计WE射频脉冲。该算法通过布洛赫方程模拟最小化一个量化脂肪-水对比度的复合损失函数。在第一项研究中,为3T生成了使用HydrOptiFrame设计的持续时间为1和0.76毫秒的B样条插值优化(BSIO)脉冲,并在健康志愿者的膝盖中进行了表征。将股骨骨髓信噪比与使用1-1 WE和脂质不敏感二项式失谐激发(LIBRE)脉冲获得的信噪比进行比较。在第二项研究中,在1.5T的心脏中,将使用2.56毫秒BSIO脉冲获得的水-脂肪对比度和冠状动脉血管长度与自由运行心血管磁共振中的1-1 WE和LIBRE脉冲进行比较。
在3T时,1毫秒的BSIO脉冲在骨髓中产生的脂肪抑制效果更高,对比度比(CR)更低,优于现有脉冲(BSIO、1-1 WE和LIBRE的CR分别为4.1±0.2、4.7±0.4和4.4±0.3;与两者相比,p<0.05)。在1.5T时,BSIO脉冲产生的血液-心外膜脂肪CR更高(BSIO、1-1 WE和LIBRE分别为3.8±1.3、1.6±0.6和2.4±1.1;与两者相比,p<0.05),可追踪的左冠状动脉血管长度更长(8.7±1.4厘米,与7.0±1.0厘米相比,p=0.04;与7.5±1.2厘米相比,p=0.09)。
HydrOptiFrame框架为设计在多个磁场强度下对B不均匀性具有鲁棒性且适用于可变射频脉冲持续时间的WE射频脉冲提供了新机会。