Ribeiro Gabriela Delaqua, de Holanda Paranhos Luan, Eleutherio Elis Cristina Araujo
Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Brazil.
Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Brazil.
Fungal Biol. 2024 Dec;128(8 Pt B):2381-2389. doi: 10.1016/j.funbio.2024.03.004. Epub 2024 Mar 16.
The disaccharide trehalose plays a crucial role in multiple facets of the stress biology of yeasts and fungi. Here, we evaluate the properties, cellular and ecophysiological roles, metabolism, and stress-protection mechanisms of trehalose. We integrate disparate sources of knowledge across these topics, and bring new information about the mechanisms by which trehalose stabilises biomacromolecules and how trehalose metabolism is regulated thus giving rise to its diverse roles in fungi including stress protector, carbohydrate reserve, and regulatory/signaling molecule. We also present new findings about the effect of trehalose on microbial adaptation, complexity and spatio-temporal heterogeneity of microbial populations, and implications for industrial processes that apply fungi. Based on the elucidation of the structures of enzymes involved in trehalose synthesis, their catalytic mechanisms, and the regulation of trehalose synthesis, we discuss prospects for the development of more-efficient fungicides. Current humanitarian crises, such as overpopulation, global warming, malnutrition, immunocompromised conditions, and usage of immunosuppressant drugs, are making the incidence of human pathogens increases. Furthermore, fungal infections can be difficult to treat due to the conserved biochemistry between human and fungi cells. Serendipitously, however, trehalose is not synthesised by mammals, which makes trehalose synthesis an interesting target for the development of new therapies.
二糖海藻糖在酵母和真菌的应激生物学的多个方面发挥着关键作用。在此,我们评估了海藻糖的特性、细胞及生态生理作用、代谢以及应激保护机制。我们整合了这些主题下不同来源的知识,并带来了关于海藻糖稳定生物大分子的机制以及海藻糖代谢如何被调控的新信息,从而揭示了海藻糖在真菌中的多种作用,包括应激保护剂、碳水化合物储备以及调节/信号分子。我们还展示了关于海藻糖对微生物适应性、微生物群体的复杂性和时空异质性的影响以及对应用真菌的工业过程的影响的新发现。基于对参与海藻糖合成的酶的结构、它们的催化机制以及海藻糖合成调控的阐明,我们讨论了开发更高效杀真菌剂的前景。当前的人道主义危机,如人口过剩、全球变暖、营养不良、免疫功能低下状况以及免疫抑制药物的使用,正使得人类病原体的发病率上升。此外,由于人类细胞和真菌细胞之间保守的生物化学性质,真菌感染可能难以治疗。然而,巧合的是,哺乳动物不合成海藻糖,这使得海藻糖合成成为开发新疗法的一个有趣靶点。