Fan Qing, Liu Yingxu, Zhang Simeng, Ning Xiangzhen, Xu Chengcheng, Han Weijie, Zhang Yanmin, Chen Yadong, Shen Jun, Liu Haichun
School of Science, China Pharmaceutical University, Nanjing, China.
J Comput Chem. 2025 Jan 5;46(1):e27538. doi: 10.1002/jcc.27538.
Identifying interactions between drugs and targets is crucial for drug discovery and development. Nevertheless, the determination of drug-target binding affinities (DTAs) through traditional experimental methods is a time-consuming process. Conventional approaches to predicting drug-target interactions (DTIs) frequently prove inadequate due to an insufficient representation of drugs and targets, resulting in ineffective feature capture and questionable interpretability of results. To address these challenges, we introduce CGPDTA, a novel deep learning framework empowered by transfer learning, designed explicitly for the accurate prediction of DTAs. CGPDTA leverages the complementarity of drug-drug and protein-protein interaction knowledge through advanced drug and protein language models. It further enhances predictive capability and interpretability by incorporating molecular substructure graphs and protein pocket sequences to represent local features of drugs and targets effectively. Our findings demonstrate that CGPDTA not only outperforms existing methods in accuracy but also provides meaningful insights into the predictive process, marking a significant advancement in the field of drug discovery.
识别药物与靶点之间的相互作用对于药物研发至关重要。然而,通过传统实验方法确定药物-靶点结合亲和力(DTA)是一个耗时的过程。由于药物和靶点的表示不足,传统的预测药物-靶点相互作用(DTI)的方法常常被证明是不够的,导致特征捕捉无效且结果的可解释性存疑。为应对这些挑战,我们引入了CGPDTA,这是一个由迁移学习赋能的新型深度学习框架,专为准确预测DTA而设计。CGPDTA通过先进的药物和蛋白质语言模型利用药物-药物和蛋白质-蛋白质相互作用知识的互补性。它通过纳入分子子结构图和蛋白质口袋序列来有效表示药物和靶点的局部特征,进一步提高了预测能力和可解释性。我们的研究结果表明,CGPDTA不仅在准确性上优于现有方法,还为预测过程提供了有意义的见解,标志着药物发现领域的重大进展。