Suppr超能文献

MMD-DTA:一种用于药物-靶点结合亲和力和结合区域预测的多模态深度学习框架。

MMD-DTA: A Multi-Modal Deep Learning Framework for Drug-Target Binding Affinity and Binding Region Prediction.

作者信息

Zhang Qi, Wei Yuxiao, Liao Bo, Liu Liwei, Zhang Shengli

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2024 Nov-Dec;21(6):2200-2211. doi: 10.1109/TCBB.2024.3451985. Epub 2024 Dec 10.

Abstract

The prediction of drug-target affinity (DTA) plays a crucial role in drug development and the identification of potential drug targets. In recent years, computer-assisted DTA prediction has emerged as a significant approach in this field. In this study, we propose a multi-modal deep learning framework called MMD-DTA for predicting drug-target binding affinity and binding regions. The model can predict DTA while simultaneously learning the binding regions of drug-target interactions through unsupervised learning. To achieve this, MMD-DTA first uses graph neural networks and target structural feature extraction network to extract multi-modal information from the sequences and structures of drugs and targets. It then utilizes the feature interaction and fusion modules to generate interaction descriptors for predicting DTA and interaction strength for binding region prediction. Our experimental results demonstrate that MMD-DTA outperforms existing models based on key evaluation metrics. Furthermore, external validation results indicate that MMD-DTA enhances the generalization capability of the model by integrating sequence and structural information of drugs and targets. The model trained on the benchmark dataset can effectively generalize to independent virtual screening tasks. The visualization of drug-target binding region prediction showcases the interpretability of MMD-DTA, providing valuable insights into the functional regions of drug molecules that interact with proteins.

摘要

药物-靶点亲和力(DTA)预测在药物研发和潜在药物靶点识别中起着关键作用。近年来,计算机辅助DTA预测已成为该领域的一种重要方法。在本研究中,我们提出了一种名为MMD-DTA的多模态深度学习框架,用于预测药物-靶点结合亲和力和结合区域。该模型可以在通过无监督学习同时学习药物-靶点相互作用的结合区域的情况下预测DTA。为实现这一点,MMD-DTA首先使用图神经网络和靶点结构特征提取网络从药物和靶点的序列及结构中提取多模态信息。然后,它利用特征交互和融合模块生成用于预测DTA的交互描述符以及用于结合区域预测的交互强度。我们的实验结果表明,基于关键评估指标,MMD-DTA优于现有模型。此外,外部验证结果表明,MMD-DTA通过整合药物和靶点的序列及结构信息提高了模型的泛化能力。在基准数据集上训练的模型可以有效地推广到独立的虚拟筛选任务。药物-靶点结合区域预测的可视化展示了MMD-DTA的可解释性,为与蛋白质相互作用的药物分子功能区域提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验