Weng Chaocang, Qiu Meijia, Wang Bingfang, Yang Jiaqi, Mai Wenjie, Pan Likun, Huang Sumei, Li Jinliang
School of Physics and Electronic Science, Shanghai Key Laboratory of Magnetic Resonance, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, China.
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
Angew Chem Int Ed Engl. 2025 Feb 10;64(7):e202419539. doi: 10.1002/anie.202419539. Epub 2024 Dec 17.
Developing high-voltage electrolytes to stabilize LiCoO (LCO) cycling remains a challenge in lithium-ion batteries. Constructing a high-quality cathode electrolyte interphase (CEI) is essential to mitigate adverse reactions at high voltages. However, conventional inorganic CEIs dominated by LiF have shown limited performance for high-voltage LCO. Here, we propose an ionic liquid electrolyte (ILE) with a high donor number additive, enabling Li//LCO cells to achieve a high cut-off voltage of 4.7 V/4.8 V and a high-capacity retention of 86.9 %/74.2 % after 100 cycles at 0.5 C. During this process, a groundbreaking phenomenon was discovered: the construction of a stable organic CEI rich in C-F bonds by the high donor number additive under high voltage. These strong polar C-F bonds exhibit excellent electrochemical inertness and film-forming properties, resulting in optimal passivation of the cathode. This organic C-F bond-dominated CEI significantly suppresses phase transitions, cobalt dissolution, and gas evolution in LCO at high voltage. Additionally, the 4.8 V-class Li//LiNiCoMnO and 4.95 V-class Li//LiNiMnO cells also demonstrate outstanding cycling stability. Even at 60 °C, the ILE-constructed organic CEI maintains superior performance. Our findings highlight the potential of organic CEI to enhance high-voltage cathode stability, paving the way for more efficient lithium-ion batteries.
开发用于稳定LiCoO₂(LCO)循环的高压电解质仍然是锂离子电池领域的一项挑战。构建高质量的阴极电解质界面(CEI)对于减轻高电压下的不良反应至关重要。然而,以LiF为主导的传统无机CEI在高压LCO方面表现出有限的性能。在此,我们提出一种含有高给体数添加剂的离子液体电解质(ILE),使Li//LCO电池能够在4.7 V/4.8 V的高截止电压下运行,并在0.5 C下循环100次后保持86.9 %/74.2 %的高容量保持率。在此过程中,发现了一个开创性的现象:高给体数添加剂在高压下构建了富含C-F键的稳定有机CEI。这些强极性C-F键表现出优异的电化学惰性和成膜性能,从而实现阴极的最佳钝化。这种以有机C-F键为主导的CEI显著抑制了LCO在高电压下的相变、钴溶解和气体析出。此外,4.8 V级的Li//LiNiCoMnO₂和4.95 V级的Li//LiNiMnO₂电池也表现出出色的循环稳定性。即使在60 °C时,由ILE构建的有机CEI仍保持优异性能。我们的研究结果突出了有机CEI在增强高压阴极稳定性方面的潜力,为更高效的锂离子电池铺平了道路。