Suppr超能文献

采用机器学习方法识别射血分数降低的缺血性心力衰竭患者的表型。

Machine learning approach to identify phenotypes in patients with ischaemic heart failure with reduced ejection fraction.

作者信息

Monzo Luca, Bresso Emmanuel, Dickstein Kenneth, Pitt Bertram, Cleland John G F, Anker Stefan D, Lam Carolyn S P, Mehra Mandeep R, van Veldhuisen Dirk J, Greenberg Barry, Zannad Faiez, Girerd Nicolas

机构信息

Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, Inserm U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France.

Department of Cardiology, University of Bergan, Stavanger University Hospital, Stavanger, Norway.

出版信息

Eur J Heart Fail. 2024 Dec 10. doi: 10.1002/ejhf.3547.

Abstract

AIMS

Patients experiencing ischaemic heart failure with reduced ejection fraction (HFrEF) represent a diverse group. We hypothesize that machine learning clustering can help separate distinctive patient phenotypes, paving the way for personalized management.

METHODS AND RESULTS

A total of 8591 ischaemic HFrEF patients pooled from the EPHESUS and CAPRICORN trials (64 ± 12 years; 28% women) were included in this analysis. Clusters were identified using both clinical and biological variables. Association between clusters and the composite of (i) heart failure hospitalization or all-cause death, (ii) cardiovascular (CV) hospitalization or all-cause death, and (iii) major adverse CV events was assessed. The derived algorithm was applied in the COMMANDER-HF trial (n = 5022) for external validation. Five clinical distinctive clusters were identified: Cluster 1 (n = 2161) with the older patients, higher prevalence of atrial fibrillation and previous CV events; Cluster 2 (n = 1376) with the higher prevalence of older hypertensive women and smoking habit; Cluster 3 (n = 1157) with the higher prevalence of diabetes and peripheral artery disease; Cluster 4 (n = 2073) with relatively younger patients, mostly men and with the higher left ventricular ejection fraction; Cluster 5 (n = 1824) with the younger patients and lower CV events burden. Cluster membership was efficiently predicted by a random forest algorithm. Clusters were significantly associated with outcomes in derivation and validation datasets, with Cluster 1 having the highest risk, and Cluster 4 the lowest. Mineralocorticoid receptor antagonist benefit on CV hospitalization or all-cause death was magnified in clusters with the lowest risk of events (Clusters 2 and 4).

CONCLUSION

Clustering reveals distinct risk subgroups in the heterogeneous array of ischaemic HFrEF patients. This classification, accessible online, could enhance future outcome predictions for ischaemic HFrEF cases.

摘要

目的

射血分数降低的缺血性心力衰竭(HFrEF)患者群体具有多样性。我们假设机器学习聚类有助于区分不同的患者表型,为个性化管理铺平道路。

方法和结果

本分析纳入了从EPHESUS和CAPRICORN试验中汇总的8591例缺血性HFrEF患者(64±12岁;28%为女性)。使用临床和生物学变量确定聚类。评估聚类与以下复合终点之间的关联:(i)心力衰竭住院或全因死亡;(ii)心血管(CV)住院或全因死亡;(iii)主要不良心血管事件。将推导的算法应用于COMMANDER-HF试验(n = 5022)进行外部验证。确定了五个临床特征聚类:聚类1(n = 2161),患者年龄较大,房颤患病率较高且既往有心血管事件;聚类2(n = 1376),老年高血压女性和吸烟习惯的患病率较高;聚类3(n = 1157),糖尿病和外周动脉疾病的患病率较高;聚类4(n = 2073),患者相对年轻,大多为男性且左心室射血分数较高;聚类5(n = 1824),患者较年轻且心血管事件负担较低。随机森林算法能有效预测聚类归属。聚类与推导和验证数据集中的结局显著相关,聚类1风险最高,聚类4风险最低。盐皮质激素受体拮抗剂对心血管住院或全因死亡的益处,在事件风险最低的聚类(聚类2和聚类4)中更为显著。

结论

聚类揭示了缺血性HFrEF患者异质性群体中的不同风险亚组。这种可在线获取的分类方法,可增强未来对缺血性HFrEF病例结局的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验