Hasegawa Tatsuo, Inoue Satoru, Tsuzuki Seiji, Horiuchi Sachio, Matsui Hiroyuki, Okada Tomoharu, Kumai Reiji, Yonekura Koji, Maki-Yonekura Saori
Department of Applied Physics, The University of Tokyo, Tokyo, Japan.
Research Institute for Advanced Electronics and Photonics (RIAEP), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
Sci Technol Adv Mater. 2024 Nov 13;25(1):2418282. doi: 10.1080/14686996.2024.2418282. eCollection 2024.
The challenge in developing molecule-based electronic materials lies in the uncontrollable or unpredictable nature of their crystal structures, which are crucial for determining both electrical properties and thin-film formability. This review summarizes the findings of a research project focused on the systematic development of crystalline organic semiconductors (OSCs) and organic ferroelectrics by integrating experimental, computational, and data sciences. The key outcomes are as follows: 1) Data Science: We developed a method to identify promising materials from crystal structure databases, leading to the discovery of unique molecule-based ferroelectrics. 2) Computational Science: The origin of high layered crystallinity in π-core - alkyl-chain-linked molecules was clarified based on intermolecular interaction calculations. We proposed a stepwise structure optimization method tailored for layered OSCs. 3) Material Development: We developed various alkylated layered OSCs, which exhibit high mobility, heat resistance, and solubility. We discovered several unique phenomena, including frozen liquid crystal phases, significant polar/antipolar control, and phase control through mixing, leveraging the variability of alkyl chain length. We also developed molecule-based ferroelectrics showing peculiar ferroelectricity, including multiple polarization reversal, competing ferroelectric/antiferroelectric order, and spinner-type configurations with π-skeletons. 4) Advanced Structural Analysis: By combining cryo-electron microscopy and X-ray-free electron laser (XFEL), we enabled crystal structure analysis for ultrathin crystals that are usually difficult to analyse. 5) Device Development: Utilizing the self-organized growth of layered OSCs through solution processes, we developed a method to produce exceptionally clean semiconductor - insulator interfaces, achieving field-effect transistors that show sharp (near theoretical limit) and stable switching at low voltages.
开发基于分子的电子材料面临的挑战在于其晶体结构具有不可控或不可预测的性质,而晶体结构对于确定电学性质和薄膜可成型性都至关重要。本综述总结了一个研究项目的成果,该项目专注于通过整合实验科学、计算科学和数据科学来系统开发晶体有机半导体(OSC)和有机铁电体。主要成果如下:1)数据科学:我们开发了一种从晶体结构数据库中识别有前景材料的方法,从而发现了独特的基于分子的铁电体。2)计算科学:基于分子间相互作用计算,阐明了π-核-烷基链连接分子中高层状结晶度的起源。我们提出了一种针对层状OSC的逐步结构优化方法。3)材料开发:我们开发了各种烷基化层状OSC,它们具有高迁移率、耐热性和溶解性。利用烷基链长度的可变性,我们发现了几种独特现象,包括冻结液晶相、显著的极性/反极性控制以及通过混合实现的相控制。我们还开发了表现出奇特铁电性的基于分子的铁电体,包括多重极化反转、竞争的铁电/反铁电有序以及具有π骨架的旋转器型构型。4)先进结构分析:通过结合低温电子显微镜和X射线自由电子激光(XFEL),我们能够对通常难以分析的超薄晶体进行晶体结构分析。5)器件开发:利用层状OSC通过溶液过程的自组织生长,我们开发了一种方法来制造异常清洁的半导体-绝缘体界面,实现了在低电压下显示出尖锐(接近理论极限)且稳定开关的场效应晶体管。