Xie Xiao Bing, Shu Yu, Cui Zong Jie
College of Life Sciences, Beijing Normal University, Beijing, China.
FASEB J. 2024 Dec 15;38(23):e70246. doi: 10.1096/fj.202402292R.
Reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidases (NOX) are a major cellular source of reactive oxygen species, regulating vital physiological functions, whose dys-regulation leads to a plethora of major diseases. Much effort has been made to develop varied types of NOX inhibitors, but biotechnologies for spatially and temporally controlled NOX activation, however, are not readily available. We previously found that ultraviolet A (UVA) irradiation activates NOX2 in rodent mast cells, to elicit persistent calcium spikes. NOX2 is composed of multiple subunits, making studies of its activation rather complicated. Here we show that the single-subunit nonrodent-expressing NOX5, when expressed ectopically in CHO-K1 cells, is activated by UVA irradiation (380 nm, 0.1-12 mW/cm, 1.5 min) inducing repetitive calcium spikes, as monitored by Fura-2 fluorescent calcium imaging. UVA-elicited calcium oscillations are inhibited by NOX inhibitor diphenyleneiodonium chloride (DPI) and blocked by singlet oxygen (O) quencher Trolox-C (300 μM). A brief pulse of photodynamic action (1.5 min) with photosensitizer sulfonated aluminum phthalocyanine (SALPC 2 μM, 675 nm, 85 mW/cm) in NOX5-CHO-K1 cells, or with genetically encoded protein photosensitizer miniSOG fused to N-terminus of NOX5 (450 nm, 85 mW/cm) in miniSOG-NOX5-CHO-K1 cells, induces persistent calcium oscillations, which are blocked by DPI. In the presence of Trolox-C, miniSOG photodynamic action no longer induces any calcium increases in miniSOG-NOX5-CHO-K1 cells. DUOX2 in human thyroid follicular cells SW579 and in DUOX2-CHO-K1 cells is similarly activated by UVA irradiation and SALPC photodynamic action. These data together suggest that NOX is activated with a brief pulse of photodynamic action.
还原型烟酰胺腺嘌呤二核苷酸磷酸[NAD(P)H]氧化酶(NOX)是细胞内活性氧的主要来源,调节重要的生理功能,其失调会导致多种重大疾病。人们已付出诸多努力来开发各种类型的NOX抑制剂,然而,用于在空间和时间上控制NOX激活的生物技术却并不容易获得。我们之前发现,紫外线A(UVA)照射可激活啮齿动物肥大细胞中的NOX2,引发持续的钙尖峰。NOX2由多个亚基组成,这使得对其激活的研究相当复杂。在此我们表明,当在CHO-K1细胞中异位表达时,单亚基非啮齿动物表达的NOX5会被UVA照射(380nm,0.1 - 12mW/cm,1.5分钟)激活,诱导重复性钙尖峰,通过Fura-2荧光钙成像监测。UVA引发的钙振荡被NOX抑制剂二苯基碘鎓氯化物(DPI)抑制,并被单线态氧(O)猝灭剂Trolox-C(300μM)阻断。在NOX5-CHO-K1细胞中,用光敏剂磺化铝酞菁(SALPC 2μM,675nm,85mW/cm)进行短暂的光动力作用脉冲(1.5分钟),或者在miniSOG-NOX5-CHO-K1细胞中,用与NOX5的N端融合的基因编码蛋白光敏剂miniSOG(450nm,85mW/cm)进行短暂的光动力作用脉冲,会诱导持续的钙振荡,这被DPI阻断。在存在Trolox-C的情况下,miniSOG光动力作用不再在miniSOG-NOX5-CHO-K1细胞中诱导任何钙增加。人甲状腺滤泡细胞SW579和DUOX2-CHO-K1细胞中的DUOX2同样被UVA照射和SALPC光动力作用激活。这些数据共同表明,NOX通过短暂的光动力作用脉冲被激活。