Suppr超能文献

基于机器学习利用真实世界临床和图像数据预测急性脑出血后的院内死亡率

Machine Learning-Based Prediction for In-Hospital Mortality After Acute Intracerebral Hemorrhage Using Real-World Clinical and Image Data.

作者信息

Matsumoto Koutarou, Ishihara Kazuaki, Matsuda Katsuhiko, Tokunaga Koki, Yamashiro Shigeo, Soejima Hidehisa, Nakashima Naoki, Kamouchi Masahiro

机构信息

Department of Health Care Administration and Management, Graduate School of Medical Sciences Kyushu University Fukuoka Japan.

Institute for Medical Information Research and Analysis Saiseikai Kumamoto Hospital Kumamoto Japan.

出版信息

J Am Heart Assoc. 2024 Dec 17;13(24):e036447. doi: 10.1161/JAHA.124.036447. Epub 2024 Dec 10.

Abstract

BACKGROUND

Machine learning (ML) techniques are widely employed across various domains to achieve accurate predictions. This study assessed the effectiveness of ML in predicting early mortality risk among patients with acute intracerebral hemorrhage (ICH) in real-world settings.

METHODS AND RESULTS

ML-based models were developed to predict in-hospital mortality in 527 patients with ICH using raw brain imaging data from brain computed tomography and clinical data. The models' performances were evaluated using the area under the receiver operating characteristic curves and calibration plots, comparing them with traditional risk scores such as the ICH score and ICH grading scale. Kaplan-Meier curves were used to examine the post-ICH survival rates, stratified by ML-based risk assessment. The net benefit of ML-based models was evaluated using decision curve analysis. The area under the receiver operating characteristic curves were 0.91 (95% CI, 0.86-0.95) for the ICH score, 0.93 (95% CI, 0.89-0.97) for the ICH grading scale, 0.83 (95% CI, 0.71-0.91) for the ML-based model fitted with raw image data only, and 0.87 (95% CI, 0.76-0.93) for the ML-based model fitted using clinical data without specialist expertise. The area under the receiver operating characteristic curve increased significantly to 0.97 (95% CI, 0.94-0.99) when the ML model was fitted using clinical and image data assessed by specialists. All ML-based models demonstrated good calibration, and the survival rates showed significant differences between risk groups. Decision curve analysis indicated the highest net benefit when utilizing the findings assessed by specialists.

CONCLUSIONS

ML-based prediction models exhibit satisfactory performance in predicting post-ICH in-hospital mortality when utilizing raw imaging data or nonspecialist input. Nevertheless, incorporating specialist expertise notably improves performance.

摘要

背景

机器学习(ML)技术在各个领域被广泛应用以实现准确预测。本研究评估了ML在真实世界环境中预测急性脑出血(ICH)患者早期死亡风险的有效性。

方法与结果

利用来自脑部计算机断层扫描的原始脑成像数据和临床数据,开发了基于ML的模型来预测527例ICH患者的院内死亡率。使用受试者操作特征曲线下面积和校准图评估模型性能,并将其与传统风险评分(如ICH评分和ICH分级量表)进行比较。采用Kaplan-Meier曲线检查基于ML的风险评估分层后的ICH后生存率。使用决策曲线分析评估基于ML的模型的净效益。ICH评分的受试者操作特征曲线下面积为0.91(95%CI,0.86-0.95),ICH分级量表为0.93(95%CI,0.89-0.97),仅使用原始图像数据拟合的基于ML的模型为0.83(95%CI,0.71-0.91),使用无专家专业知识的临床数据拟合的基于ML的模型为0.87(95%CI,0.76-0.93)。当使用专家评估的临床和图像数据拟合ML模型时,受试者操作特征曲线下面积显著增加至0.97(95%CI,0.94-0.99)。所有基于ML的模型均显示出良好的校准,且风险组之间的生存率存在显著差异。决策曲线分析表明,利用专家评估的结果时净效益最高。

结论

基于ML的预测模型在利用原始成像数据或非专家输入预测ICH后院内死亡率时表现出令人满意的性能。然而,纳入专家专业知识可显著提高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/11935536/514d1718abba/JAH3-13-e036447-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验