Han Rui, Duan Linrui, Xu Yuxing, Kong Lingxin, Liu Guiju, Ni Jian, Zhang Jianjun
Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China.
Department of Electronic Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China.
ACS Appl Mater Interfaces. 2024 Dec 18;16(50):69459-69466. doi: 10.1021/acsami.4c16982. Epub 2024 Dec 10.
CsPbI perovskite quantum dots (PQDs) have emerged as promising photovoltaic materials for third-generation solar cells, owing to their superior optoelectronic properties. Nevertheless, the performance of CsPbI PQD solar cells is primarily hindered by low carrier extraction efficiency, largely due to the insulative ligands. In this study, we introduced a semiconductor molecule, [6,6]-phenyl C butyric acid methyl ester (PCBM), onto the surfaces of CsPbI PQDs as surface ligands to enhance photogenerated charge extraction. The results indicate that PCBM accelerates carrier separation in CsPbI PQDs by forming a type II heterojunction, and also modulates the energy level of CsPbI PQDs by altering surface dipole moments. Additionally, we established an energy-level gradient alignment in the PCBM/CsPbI PQD heterojunction absorber layer, which was found to effectively promote carrier extraction and reduce carrier recombination loss in PQD solar cells. Ultimately, the PQD solar cells incorporating this novel structure achieved a power conversion efficiency of 14.23%, a significant improvement compared to 12.69% achieved by solar cells with a traditional structure, thus demonstrating the strong potential of this approach for high-performance PQD solar cells.
由于具有优异的光电性能,CsPbI钙钛矿量子点(PQDs)已成为第三代太阳能电池中很有前景的光伏材料。然而,CsPbI量子点太阳能电池的性能主要受到载流子提取效率低的阻碍,这在很大程度上归因于绝缘配体。在本研究中,我们将一种半导体分子,即[6,6]-苯基C丁酸甲酯(PCBM),作为表面配体引入到CsPbI量子点表面,以增强光生电荷提取。结果表明,PCBM通过形成II型异质结加速了CsPbI量子点中的载流子分离,并且还通过改变表面偶极矩来调节CsPbI量子点的能级。此外,我们在PCBM/CsPbI量子点异质结吸收层中建立了能级梯度排列,发现这有效地促进了载流子提取并减少了量子点太阳能电池中的载流子复合损失。最终,采用这种新型结构的量子点太阳能电池实现了14.23%的功率转换效率,与传统结构太阳能电池实现的12.69%相比有显著提高,从而证明了这种方法在高性能量子点太阳能电池方面的强大潜力。