Suppr超能文献

基于模型的方法,使用基于人工智能的倾向加权方法估计安慰剂对照临床试验中的治疗效果,以考虑对治疗的非特异性反应。

Model-informed approach to estimate treatment effect in placebo-controlled clinical trials using an artificial intelligence-based propensity weighting methodology to account for non-specific responses to treatment.

作者信息

Gomeni Roberto, Bressolle-Gomeni F

机构信息

Pharmacometrica, Longcol, La Fouillade, France.

Lieu-dit Longcol, La Fouillade, 12270, France.

出版信息

J Pharmacokinet Pharmacodyn. 2024 Dec 10;52(1):5. doi: 10.1007/s10928-024-09950-7.

Abstract

In randomized, placebo controlled clinical trials (RCT) in major depressive disorders (MDD), treatment response (TR) is estimated by the change from baseline at study-end (EOS) of the scores of clinical scales used for assessing disease severity. Treatment effect (TE) is estimated by the baseline-adjusted difference at EOS of TR between active treatments and placebo.The TE is function of treatment-specific and, non-specific (NSRT) effect (referred as placebo effect), and placebo response. The conventional statistical approaches used to estimate TE does not account for the potentially confounding effect of NSRT. This pragmatic approach is equivalent to assume that TE is independent of NSRT even if this assumption is not true, leading to potential risks of inflating false negative/positive results in presence of high proportion of subjects with high/low NSRT.The objective of this study was to develop a model informed framework to analyze the outcomes of RCTs using data driven models, non-linear-mixed effect approach, artificial intelligence, and propensity score weighted methodology (PSW) to control the confounding effect of treatment non-specific response on the estimated TE. The secondary objective was to explore the impact of relevant covariates (including the assessment of a dose-response relationship) on the outcomes of pooled data from two RCTs.The proposed PSW approach provides a critical tool for controlling the confounding effect of treatment non-specific response, to increase signal detection and to provide a reliable estimate of the 'true' treatment effect by controlling false negative results associated with excessively high treatment non-specific response.

摘要

在重度抑郁症(MDD)的随机、安慰剂对照临床试验(RCT)中,治疗反应(TR)通过用于评估疾病严重程度的临床量表得分在研究结束(EOS)时相对于基线的变化来估计。治疗效果(TE)通过活性治疗组与安慰剂组在EOS时经基线调整后的TR差异来估计。TE是治疗特异性效应和非特异性效应(NSRT,也称为安慰剂效应)以及安慰剂反应的函数。用于估计TE的传统统计方法没有考虑NSRT的潜在混杂效应。这种实用方法相当于假设TE与NSRT无关,即使该假设不成立,这在高比例具有高/低NSRT的受试者存在时会导致夸大假阴性/阳性结果的潜在风险。本研究的目的是开发一个基于模型的框架,使用数据驱动模型、非线性混合效应方法、人工智能和倾向得分加权方法(PSW)来分析RCT的结果,以控制治疗非特异性反应对估计的TE的混杂效应。次要目标是探讨相关协变量(包括剂量反应关系评估)对来自两项RCT的汇总数据结果的影响。所提出的PSW方法为控制治疗非特异性反应的混杂效应提供了一个关键工具,以增加信号检测,并通过控制与过高治疗非特异性反应相关的假阴性结果来提供“真实”治疗效果的可靠估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/279b/11631816/5ef24ea3e92c/10928_2024_9950_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验