Suppr超能文献

在安慰剂对照的重度抑郁症临床试验中预测非特异性治疗反应的不同机器学习方法比较

Comparison of Different Machine Learning Methodologies for Predicting the Non-Specific Treatment Response in Placebo Controlled Major Depressive Disorder Clinical Trials.

作者信息

Gomeni Roberto, Bressolle-Gomeni Françoise

机构信息

Pharmacometrica, La Fouillade, France.

出版信息

Clin Transl Sci. 2025 Jan;18(1):e70128. doi: 10.1111/cts.70128.

Abstract

Placebo effect represents a serious confounder for the assessment of treatment effect to the extent that it has become increasingly difficult to develop antidepressant medications appropriate for outperforming placebo. Treatment effect in randomized, placebo-controlled trials, is usually estimated by the mean baseline adjusted difference of treatment response in active and placebo arms and is function of treatment-specific and non-specific effects. The non-specific treatment effect varies subject by subject conditional to the individual propensity to respond to placebo. This effect is not estimable at an individual level using the conventional parallel-group study design, since each subject enrolled in the trial is assigned to receive either active treatment or placebo, but not both. The objective of this study was to conduct a comparative analysis of the machine learning methodologies to estimate the individual probability of a non-specific treatment effect. The estimated probability is expected to support novel methodological approaches for better controlling effect of excessively high placebo response. At this purpose, six machine learning methodologies (gradient boosting machine, lasso regression, logistic regression, support vector machines, k-nearest neighbors, and random forests) were compared to the multilayer perceptrons artificial neural network (ANN) methodology for predicting the probability of individual non-specific treatment response. ANN achieved the highest overall accuracy among all methods tested. A fivefold cross-validation was used to assess performances and risks of overfitting of the ANN model. The analysis conducted without subjects with non-specific effect indicated a significant increase of signal detection with significant increase in effect size.

摘要

安慰剂效应在评估治疗效果时是一个严重的混杂因素,以至于开发出比安慰剂更有效的抗抑郁药物变得越来越困难。在随机、安慰剂对照试验中,治疗效果通常通过活性药物组和安慰剂组治疗反应的平均基线调整差异来估计,并且是治疗特异性和非特异性效应的函数。非特异性治疗效果因个体对安慰剂反应的倾向不同而因人而异。使用传统的平行组研究设计无法在个体水平上估计这种效应,因为参与试验的每个受试者要么被分配接受活性治疗,要么接受安慰剂,而不是两者都接受。本研究的目的是对机器学习方法进行比较分析,以估计非特异性治疗效果的个体概率。预计估计出的概率将支持新的方法,以更好地控制过高安慰剂反应的影响。为此,将六种机器学习方法(梯度提升机、套索回归、逻辑回归、支持向量机、k近邻和随机森林)与多层感知器人工神经网络(ANN)方法进行比较,以预测个体非特异性治疗反应的概率。在所有测试方法中,ANN的总体准确率最高。使用五重交叉验证来评估ANN模型的性能和过拟合风险。在没有非特异性效应受试者的情况下进行的分析表明,信号检测显著增加,效应大小也显著增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bca/11729444/84ef90cdf7bf/CTS-18-e70128-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验