Skiles Chad M, Boyd Gerard, Gouw Aaron, Robbins Ethan, Minchev Kiril, Ryder Jeffrey, Ploutz-Snyder Lori, Trappe Todd A, Trappe Scott
Human Performance Laboratory, Ball State University, Muncie, Indiana, United States.
Universities Space Research Association, NASA Johnson Space Center, Houston, Texas, United States.
J Appl Physiol (1985). 2025 Jan 1;138(1):195-202. doi: 10.1152/japplphysiol.00468.2024. Epub 2024 Dec 10.
We previously observed a range of whole muscle and individual slow and fast myofiber size responses (mean: +4 to -24%) in quadriceps (vastus lateralis) and triceps surae (soleus) muscles of individuals undergoing 70 days of simulated microgravity with or without the NASA SPRINT exercise countermeasures program. The purpose of the current investigation was to further explore, in these same individuals, the content of myonuclei and satellite cells, both of which are key regulators of skeletal muscle mass. Individuals completed 6° head-down-tilt bedrest (BR, = 9), bedrest with resistance and aerobic exercise (BRE, = 9), or bedrest with resistance and aerobic exercise and low-dose testosterone (BRE + T, = 8). The number of myonuclei and satellite cells associated with each slow [myosin heavy chain (MHC) I] and fast (MHC IIa) myofiber in the vastus lateralis was not changed ( > 0.05) pre- to postbedrest within the BR, BRE, or BRE + T groups. Similarly, in the soleus, the number of myonuclei associated with each slow and fast myofiber, and the number of satellite cells associated with each slow myofiber were not changed ( > 0.05) pre- to postbedrest within the BR, BRE, or BRE + T groups. It appears that even with relatively large perturbations in muscle mass over a few months of simulated microgravity, or with partially or completely effective exercise countermeasures, human skeletal muscle tightly regulates the abundance of myonuclei and satellite cells. Thus, exercise countermeasures efficacy for skeletal muscle atrophy appears to be independent of myonuclei and satellite cell abundance. This study showed that after 70 days of simulated microgravity, human skeletal muscle does not alter the number of nuclei or satellite cells associated with slow or fast myofibers in the two muscle groups most negatively influenced by microgravity exposure [i.e., quadriceps (vastus lateralis) and triceps surae (soleus)]. Furthermore, the efficacy of exercise countermeasures for maintaining the mass of these muscles does not appear to be related to the myocellular content of nuclei or satellite cells.
我们之前观察到,在接受70天模拟微重力的个体的股四头肌(股外侧肌)和小腿三头肌(比目鱼肌)中,无论是否参加美国国家航空航天局(NASA)的SPRINT运动对抗计划,整体肌肉以及慢肌纤维和快肌纤维个体的大小都有一系列变化(平均值为+4%至-24%)。本次研究的目的是在这些相同个体中,进一步探究肌核及卫星细胞的含量,这两者都是骨骼肌质量的关键调节因子。个体分别完成了6°头低位卧床休息(BR,n = 9)、有抗阻及有氧运动的卧床休息(BRE,n = 9),或有抗阻及有氧运动和低剂量睾酮的卧床休息(BRE + T,n = 8)。在BR、BRE或BRE + T组中,卧床休息前后,股外侧肌中与每条慢肌纤维[肌球蛋白重链(MHC)I]和快肌纤维(MHC IIa)相关的肌核及卫星细胞数量均未改变(P>0.05)。同样,在比目鱼肌中,BR、BRE或BRE + T组卧床休息前后,与每条慢、快肌纤维相关的肌核数量以及与每条慢肌纤维相关的卫星细胞数量均未改变(P>0.05)。看起来,即使在几个月的模拟微重力期间肌肉质量出现了相对较大的波动,或者采用了部分或完全有效的运动对抗措施,人类骨骼肌仍会严格调节肌核及卫星细胞的数量。因此,运动对抗措施对骨骼肌萎缩的功效似乎与肌核及卫星细胞数量无关。本研究表明,经过70天模拟微重力后,人类骨骼肌不会改变与受微重力暴露影响最严重的两组肌肉(即股四头肌(股外侧肌)和小腿三头肌(比目鱼肌))中慢、快肌纤维相关的细胞核或卫星细胞数量。此外,运动对抗措施对维持这些肌肉质量的功效似乎与肌细胞中的细胞核或卫星细胞含量无关。