MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK.
School of Life Sciences, University of Nottingham, Nottingham, UK.
Geroscience. 2023 Feb;45(1):451-462. doi: 10.1007/s11357-022-00651-y. Epub 2022 Sep 9.
Ageing limits growth capacity of skeletal muscle (e.g. in response to resistance exercise), but the role of satellite cell (SC) function in driving this phenomenon is poorly defined. Younger (Y) (~ 23 years) and older (O) men (~ 69 years) (normal-weight BMI) underwent 6 weeks of unilateral resistance exercise training (RET). Muscle biopsies were taken at baseline and after 3-/6-week training. We determined muscle size by fibre CSA (and type), SC number, myonuclei counts and DNA synthesis (via DO ingestion). At baseline, there were no significant differences in fibre areas between Y and O. RET increased type I fibre area in Y from baseline at both 3 weeks and 6 weeks (baseline: 4509 ± 534 µm, 3 weeks; 5497 ± 510 µm P < 0.05, 6 weeks; 5402 ± 352 µm P < 0.05), whilst O increased from baseline at 6 weeks only (baseline 5120 ± 403 µm, 3 weeks; 5606 ± 620 µm, 6 weeks; 6017 ± 482 µm P < 0.05). However, type II fibre area increased from baseline in Y at both 3 weeks and 6 weeks (baseline: 4949 ± 459 µm, 3 weeks; 6145 ± 484 µm (P < 0.01), 6 weeks; 5992 ± 491 µm (P < 0.01), whilst O showed no change (baseline 5210 ± 410 µm, 3 weeks; 5356 ± 535 µm (P = 0.9), 6 weeks; 5857 ± 478 µm (P = 0.1). At baseline, there were no differences in fibre myonuclei number between Y and O. RET increased type I fibre myonuclei number from baseline in both Y and O at 3 weeks and 6 weeks with RET (younger: baseline 2.47 ± 0.16, 3 weeks; 3.19 ± 0.16 (P < 0.001), 6 weeks; 3.70 ± 0.29 (P < 0.0001); older: baseline 2.29 ± 0.09, 3 weeks; 3.01 ± 0.09 (P < 0.001), 6 weeks; 3.65 ± 0.18 (P < 0.0001)). Similarly, type II fibre myonuclei number increased from baseline in both Y and O at 3 weeks and 6 weeks (younger: baseline 2.49 ± 0.14, 3 weeks; 3.31 ± 0.21 (P < 0.001), 6 weeks; 3.86 ± 0.29 (P < 0.0001); older: baseline 2.43 ± 0.12, 3 weeks; 3.37 ± 0.12 (P < 0.001), 6 weeks; 3.81 ± 0.15 (P < 0.0001)). DNA synthesis rates %.d exhibited a main effect of training but no age discrimination. Declines in myonuclei addition do not underlie impaired muscle growth capacity in older humans, supporting ribosomal and proteostasis impairments as we have previously reported.
衰老限制了骨骼肌的生长能力(例如,对阻力运动的反应),但卫星细胞(SC)功能在驱动这一现象中的作用还不清楚。较年轻的(Y)(23 岁)和较老的(O)男性(69 岁)(正常体重 BMI)接受了 6 周的单侧阻力运动训练(RET)。在基线和 3/6 周训练后采集肌肉活检。我们通过纤维 CSA(和类型)、SC 数量、肌核计数和 DNA 合成(通过 DO 摄入)来确定肌肉大小。在基线时,Y 和 O 之间的纤维面积没有显著差异。RET 在 3 周和 6 周时均增加了 Y 型 I 纤维面积(基线:4509±534 µm,3 周;5497±510 µm P<0.05,6 周;5402±352 µm P<0.05),而 O 仅在 6 周时增加(基线 5120±403 µm,3 周;5606±620 µm,6 周;6017±482 µm P<0.05)。然而,Y 型 II 纤维面积在 3 周和 6 周时均从基线增加(基线:4949±459 µm,3 周;6145±484 µm(P<0.01),6 周;5992±491 µm(P<0.01),而 O 则没有变化(基线 5210±410 µm,3 周;5356±535 µm(P=0.9),6 周;5857±478 µm(P=0.1)。在基线时,Y 和 O 之间的纤维肌核数量没有差异。RET 在 3 周和 6 周时均增加了 Y 和 O 型 I 纤维肌核数量,在 RET 时从基线增加(年轻:基线 2.47±0.16,3 周;3.19±0.16(P<0.001),6 周;3.70±0.29(P<0.0001);年长:基线 2.29±0.09,3 周;3.01±0.09(P<0.001),6 周;3.65±0.18(P<0.0001))。同样,Y 和 O 型 II 纤维肌核数量在 3 周和 6 周时从基线增加(年轻:基线 2.49±0.14,3 周;3.31±0.21(P<0.001),6 周;3.86±0.29(P<0.0001);年长:基线 2.43±0.12,3 周;3.37±0.12(P<0.001),6 周;3.81±0.15(P<0.0001))。DNA 合成率%.d 表现出训练的主要影响,但没有年龄歧视。肌核增加的减少并不是老年人肌肉生长能力受损的原因,这支持了我们之前报道的核糖体和蛋白质稳态受损。