Suppr超能文献

基于贝叶斯信念网络在生态学、保护学和环境政策领域创建简单的预测模型。

Creating simple predictive models in ecology, conservation and environmental policy based on Bayesian belief networks.

作者信息

Dominguez Almela Victoria, Croker Abigail R, Stafford Richard

机构信息

School of Geography and Environmental Sciences, University of Southampton, Southampton, United Kingdom.

Centre for Environmental Policy, Imperial College London, London, United Kingdom.

出版信息

PLoS One. 2024 Dec 10;19(12):e0305882. doi: 10.1371/journal.pone.0305882. eCollection 2024.

Abstract

Predictive models are often complex to produce and interpret, yet can offer valuable insights for management, conservation and policy-making. Here we introduce a new modelling tool (the R package 'BBNet'), which is simple to use, and requires little mathematical or computer programming background. By using straightforward concepts to describe interactions between model components, predictive models can be effectively constructed using basic spreadsheet tools and loaded into the R package. These models can be analysed, visualised, and sensitivity tested to assess how information flows through the system's components and provide predictions for future outcomes of the systems. This paper provides a theoretical background to the models, which are modified Bayesian belief networks (BBNs), and an overview of how the package can be used. The models are not fully quantitative, but outcomes between different modelled scenarios can be considered ordinally (i.e. ranked from 'best' to 'worse'). Parameterisation of models can also be through data, literature, expert opinion, questionnaires and/or surveys of opinion, which are expressed as a simple 'weak' to 'very strong' or 1-4 integer value for interactions between model components. While we have focussed on the use of the models in environmental and ecological problems (including with links to management and social outcomes), their application does not need to be restricted to these disciplines, and use in financial systems, molecular biology, political sciences and many other disciplines are possible.

摘要

预测模型的构建和解读往往很复杂,但能为管理、保护和决策提供有价值的见解。在此,我们介绍一种新的建模工具(R包“BBNet”),它使用简单,几乎不需要数学或计算机编程背景。通过使用直观的概念来描述模型组件之间的相互作用,可以使用基本的电子表格工具有效地构建预测模型,并将其加载到R包中。这些模型可以进行分析、可视化和敏感性测试,以评估信息如何在系统组件中流动,并为系统的未来结果提供预测。本文提供了这些模型(即改进的贝叶斯信念网络(BBN))的理论背景,并概述了该软件包的使用方法。这些模型并非完全定量,但不同建模情景之间的结果可以按顺序考虑(即从“最佳”到“最差”排序)。模型的参数化也可以通过数据、文献、专家意见、问卷调查和/或意见调查来进行,这些以模型组件之间相互作用的简单“弱”到“非常强”或1 - 4整数值来表示。虽然我们专注于这些模型在环境和生态问题中的应用(包括与管理和社会结果的联系),但其应用并不局限于这些学科,在金融系统、分子生物学、政治学和许多其他学科中也可能适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/111c/11630608/edd3ec256402/pone.0305882.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验