Suppr超能文献

整合个体和群体水平的人类行为模型,为保护干预提供信息。

Integrating models of human behaviour between the individual and population levels to inform conservation interventions.

机构信息

School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, UK.

Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2019 Sep 16;374(1781):20180053. doi: 10.1098/rstb.2018.0053. Epub 2019 Jul 29.

Abstract

Conservation takes place within social-ecological systems, and many conservation interventions aim to influence human behaviour in order to push these systems towards sustainability. Predictive models of human behaviour are potentially powerful tools to support these interventions. This is particularly true if the models can link the attributes and behaviour of individuals with the dynamics of the social and environmental systems within which they operate. Here we explore this potential by showing how combining two modelling approaches (social network analysis, SNA, and agent-based modelling, ABM) could lead to more robust insights into a particular type of conservation intervention. We use our simple model, which simulates knowledge of ranger patrols through a hunting community and is based on empirical data from a Cambodian protected area, to highlight the complex, context-dependent nature of outcomes of information-sharing interventions, depending both on the configuration of the network and the attributes of the agents. We conclude by reflecting that both SNA and ABM, and many other modelling tools, are still too compartmentalized in application, either in ecology or social science, despite the strong methodological and conceptual parallels between their uses in different disciplines. Even a greater sharing of methods between disciplines is insufficient, however; given the impact of conservation on both the social and ecological aspects of systems (and vice versa), a fully integrated approach is needed, combining both the modelling approaches and the disciplinary insights of ecology and social science. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.

摘要

保护发生在社会-生态系统中,许多保护干预措施旨在影响人类行为,以推动这些系统向可持续性发展。人类行为预测模型是支持这些干预措施的潜在有力工具。如果这些模型能够将个体的属性和行为与他们所处的社会和环境系统的动态联系起来,那么情况尤其如此。在这里,我们通过展示如何将两种建模方法(社会网络分析,SNA 和基于代理的建模,ABM)结合起来,可以更深入地了解特定类型的保护干预措施,来探索这种潜力。我们使用我们的简单模型,该模型通过狩猎社区模拟护林员巡逻的知识,并且基于柬埔寨保护区的经验数据,来突出信息共享干预措施的结果的复杂、依赖背景的性质,这取决于网络的配置和代理的属性。最后,我们反思到,尽管在不同学科中使用 SNA 和 ABM 以及许多其他建模工具具有很强的方法和概念上的相似性,但在应用中它们仍然过于分割,无论是在生态学还是社会科学中。然而,即使在学科之间更广泛地共享方法,也仍然不够;鉴于保护对系统的社会和生态方面(反之亦然)都有影响,因此需要一种完全综合的方法,将建模方法和生态学和社会科学的学科见解结合起来。本文是主题为“将行为与种群和群落动态联系起来:行为生态学中新颖方法在保护中的应用”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d34f/6710576/a19523fb647d/rstb20180053-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验