Cary Institute of Ecosystem Studies, Millbrook, NY 12545.
IBM Research - Thomas J. Watson Research Center, Yorktown Heights, NY 10598.
Proc Natl Acad Sci U S A. 2023 Sep 19;120(38):e2220283120. doi: 10.1073/pnas.2220283120. Epub 2023 Sep 11.
Research in both ecology and AI strives for predictive understanding of complex systems, where nonlinearities arise from multidimensional interactions and feedbacks across multiple scales. After a century of independent, asynchronous advances in computational and ecological research, we foresee a critical need for intentional synergy to meet current societal challenges against the backdrop of global change. These challenges include understanding the unpredictability of systems-level phenomena and resilience dynamics on a rapidly changing planet. Here, we spotlight both the promise and the urgency of a convergence research paradigm between ecology and AI. Ecological systems are a challenge to fully and holistically model, even using the most prominent AI technique today: deep neural networks. Moreover, ecological systems have emergent and resilient behaviors that may inspire new, robust AI architectures and methodologies. We share examples of how challenges in ecological systems modeling would benefit from advances in AI techniques that are themselves inspired by the systems they seek to model. Both fields have inspired each other, albeit indirectly, in an evolution toward this convergence. We emphasize the need for more purposeful synergy to accelerate the understanding of ecological resilience whilst building the resilience currently lacking in modern AI systems, which have been shown to fail at times because of poor generalization in different contexts. Persistent epistemic barriers would benefit from attention in both disciplines. The implications of a successful convergence go beyond advancing ecological disciplines or achieving an artificial general intelligence-they are critical for both persisting and thriving in an uncertain future.
研究生态和人工智能都致力于对复杂系统进行预测性理解,这些系统的非线性源于多维度的相互作用和跨多个尺度的反馈。在计算和生态学研究分别独立、异步发展了一个世纪之后,我们预见到,为了应对全球变化背景下的当前社会挑战,有必要有目的地协同发展。这些挑战包括理解系统层面现象的不可预测性以及快速变化的星球上的弹性动态。在这里,我们聚焦于生态学和人工智能之间的融合研究范式的前景和紧迫性。即使使用当今最杰出的人工智能技术——深度神经网络,生态系统也难以进行全面和整体建模。此外,生态系统具有涌现和弹性的行为,可能会激发新的、稳健的人工智能架构和方法。我们分享了一些例子,说明了生态系统建模的挑战如何受益于受其试图建模的系统启发的人工智能技术的进步。这两个领域一直在相互启发,尽管是间接的,朝着这种融合方向发展。我们强调需要更有目的地协同发展,以加速对生态弹性的理解,同时建立现代人工智能系统中目前缺乏的弹性,这些系统由于在不同环境中的泛化能力差而有时会失败。持续的认识论障碍将受益于两个学科的关注。成功融合的影响不仅在于推进生态学学科或实现人工智能的通用性——它们对于在不确定的未来中持续存在和繁荣至关重要。