Mayeur Hélène, Leyhr Jake, Mulley John, Leurs Nicolas, Michel Léo, Sharma Kanika, Lagadec Ronan, Aury Jean-Marc, Osborne Owen G, Mulhair Peter, Poulain Julie, Mangenot Sophie, Mead Daniel, Smith Michelle, Corton Craig, Oliver Karen, Skelton Jason, Betteridge Emma, Dolucan Jale, Dudchenko Olga, Omer Arina D, Weisz David, Aiden Erez L, McCarthy Shane A, Sims Ying, Torrance James, Tracey Alan, Howe Kerstin, Baril Tobias, Hayward Alexander, Martinand-Mari Camille, Sanchez Sophie, Haitina Tatjana, Martin Kyle, Korsching Sigrun I, Mazan Sylvie, Debiais-Thibaud Mélanie
Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-mer, France.
Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
Mol Biol Evol. 2024 Dec 6;41(12). doi: 10.1093/molbev/msae246.
Cartilaginous fishes (chondrichthyans: chimeras and elasmobranchs -sharks, skates, and rays) hold a key phylogenetic position to explore the origin and diversifications of jawed vertebrates. Here, we report and integrate reference genomic, transcriptomic, and morphological data in the small-spotted catshark Scyliorhinus canicula to shed light on the evolution of sensory organs. We first characterize general aspects of the catshark genome, confirming the high conservation of genome organization across cartilaginous fishes, and investigate population genomic signatures. Taking advantage of a dense sampling of transcriptomic data, we also identify gene signatures for all major organs, including chondrichthyan specializations, and evaluate expression diversifications between paralogs within major gene families involved in sensory functions. Finally, we combine these data with 3D synchrotron imaging and in situ gene expression analyses to explore chondrichthyan-specific traits and more general evolutionary trends of sensory systems. This approach brings to light, among others, novel markers of the ampullae of Lorenzini electrosensory cells, a duplication hotspot for crystallin genes conserved in jawed vertebrates, and a new metazoan clade of the transient-receptor potential (TRP) family. These resources and results, obtained in an experimentally tractable chondrichthyan model, open new avenues to integrate multiomics analyses for the study of elasmobranchs and jawed vertebrates.
软骨鱼类(软骨鱼纲:银鲛目和板鳃亚纲——鲨鱼、鳐鱼和魟鱼)在探索有颌脊椎动物的起源和多样化方面具有关键的系统发育地位。在此,我们报告并整合了小斑猫鲨(Scyliorhinus canicula)的参考基因组、转录组和形态学数据,以阐明感觉器官的进化。我们首先描述了猫鲨基因组的一般特征,证实了软骨鱼类基因组组织的高度保守性,并研究了群体基因组特征。利用转录组数据的密集采样,我们还确定了所有主要器官(包括软骨鱼类特化器官)的基因特征,并评估了参与感觉功能的主要基因家族内旁系同源基因之间的表达多样化。最后,我们将这些数据与三维同步加速器成像和原位基因表达分析相结合,以探索软骨鱼类特有的特征以及感觉系统更普遍的进化趋势。这种方法揭示了许多内容,包括洛伦兹尼壶腹电感觉细胞的新标记、在有颌脊椎动物中保守的晶状体蛋白基因重复热点,以及瞬时受体电位(TRP)家族的一个新后生动物分支。在一个易于实验操作的软骨鱼模型中获得的这些资源和结果,为整合多组学分析以研究板鳃亚纲动物和有颌脊椎动物开辟了新途径。